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Abstract

Talking gesture generation is a practical yet challeng-
ing task that aims to synthesize gestures in line with speech.
Gestures with meaningful signs can better convey useful in-
formation and arouse sympathy in the audience. Current
works focus on aligning gestures with the speech rhythms,
which are difficult to mine the semantics and model seman-
tic gestures explicitly. This paper proposes a novel SE-
mantic Energized Generation (SEEG) method for semantic-
aware gesture generation. Our method contains two parts:
DEcoupled Mining module (DEM) and Semantic Energiz-
ing Module (SEM). DEM decouples the semantic-irrelevant
information from inputs and separately mines information
for the beat and semantic gestures. SEM conducts seman-
tic learning and produces semantic gestures. Apart from
representational similarity, SEM requires the predictions
to express the same semantics as the ground truth. Be-
sides, a semantic prompter is designed in SEM to leverage
the semantic-aware supervision to predictions. This pro-
motes the networks to learn and generate semantic gestures.
Experimental results reported in three metrics on differ-
ent benchmarks prove that SEEG efficiently mines semantic
cues and generates semantic gestures. SEEG outperforms
other methods in all semantic-aware evaluations on differ-
ent datasets. Qualitative evaluations also indicate the supe-
riority of SEEG in semantic expressiveness. Code is avail-
able via https://github.com/akira-l/SEEG.

1. Introduction

Recently, in synthesizing digital humans, vivid gestures
can primarily improve reality, naturalness, and efficient in-

*This work was performed at Alibaba DAMO Academy, Alibaba
Group.

(a) Diverse and expressive semantic gestures

(b) Intuitive and semantic-irrelevant beat gestures
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Figure 1. Co-speech gestures contain semantic-irrelevant beat and
diverse semantic gestures. SEEG explores both gestures and pro-
duces better semantic gestures.

formation expression. Especially, talking gestures provide
nonverbal cues of semantic expression and emphasize high-
lights and attitudes woven into our daily communication.
Along with digital manipulation techniques, the speech-
driven gesture is an emerging application, e.g., digital hu-
man animation, visual dubbing in movies, online service,
and education. The goal is to simulate artificial embod-
ied agents to perform harmonious gestures aligned with the
speech contents [14, 21, 29, 34]. Automated speech-driven
gesture generation studies the generation of natural gesture
sequences by exploring the relationships between speech

https://github.com/akira-l/SEEG


and body language. It provides a new opportunity for re-
alistic human-human interaction in virtual platforms.

Toward vivid speech-driven gestures, an intuitive expec-
tation is to produce gestures corresponding to the speech
contents. Humans naturally respond to their speeches and
produce gestures to deliver specific semantics as in human
ethology. As shown in Fig. 1, most co-speech gestures are
compounded by beat and semantic gestures [8, 15]. Beat
gestures are irrelevant to lexical semantics. It is indepen-
dent to the content of the speech and prefers to respond to
the rhythms of sounds. For example, the fast-talker tends
to move more frequently in speak gestures. Semantic ges-
tures 1 are apt to express certain speech content with body
language, including iconic gestures, metaphoric gestures,
and deictic gestures [8]. For example, speakers may raise
their hands to emphasize their attitudes, corresponding to
“clearly”, “definitely”, etc. Generating semantic gestures
would lead to a vivid and reasonable content-based gesture
rather than simply following the beat. However, the prior
works of co-speech gestures synthesis [20, 29, 34, 35] do
not explicitly produce semantic gestures and fail to model
the lexical-semantic relevance between speech and gestures.
For instance, when merely learning with the semantic-
irrelevant cues, i.e., the rhythms of audio and speakers’
identities, we achieve a comparable score with state-of-the-
art methods [34]. This indicates that the current methods
are hard to learn semantics explicitly and produce semantic-
aware gestures.

It is challenging to generate semantic gestures for the
following two reasons. First, semantic cues for generating
semantic gestures are hard to be mined. The styles and the
movements of semantic gestures vary widely among speak-
ers according to different contents. Meanwhile, beat ges-
tures are inclined to intuitive and straightforward responses
to the cues from sound, which commonly occur and are eas-
ier for the networks to mine. This difference induces seman-
tic cues that are hard to be mined. The network may be rela-
tively inclined to beat gestures and be slacked to investigate
semantic cues. Second, semantic gestures and their corre-
sponding texts are not well aligned temporally. As shown
in Fig. 2, some gestures may be performed before or after
the semantics they conveyed. This leads the network to un-
favorably learn semantic gestures since it is hard to receive
an explicit hint of semantic correlation via the given data.
These two challenges hinder the generation and expression
of semantics in gestures.

This paper introduces a novel method to achieve
semantic-aware co-speech gesture generation named SE-
mantic Energized Generation (SEEG). SEEG efficiently
mines semantic and beat cues respectively and conducts
semantic-aware gesture generation. Specifically, SEEG

1We collectively refer to the three kinds of gestures as semantic ges-
tures to distinguish them from the beat gesture.

contains two components, i.e., DEcoupled Mining mod-
ule (DEM) and a Semantic Energized Module (SEM). DE-
coupled Mining module decouples speech input cues into
semantic-relevant cues (closely coupled to speech contents)
and semantic-irrelevant cues (only beat information). Then,
two separate encoders in DEM process Semantic-relevant
cues and semantic-irrelevant cues to understand information
for semantic and beat gestures. After input decomposition,
one encoder focuses on the representation for beat gestures,
while the other encoder exploits the diverse semantic infor-
mation for semantic gestures. This process eases the learn-
ing of semantic and beat gestures with huge disparities. The
networks enable explicitly mine differential information for
the beat and semantic gestures. If we expect the networks to
learn semantics, DEM avoids forcing the networks to learn
semantics from beat gestures that do not contain semantic
denotations. Semantic Energized Module aims to avoid
generation degrading to beat gestures. SEM energizes se-
mantic learning by constraining two kinds of similarities:
representational similarity and semantic similarity. Rep-
resentational similarity requires the generation to be sim-
ilar to the ground truth in appearances. More critically,
DEM pursues semantic similarity and encourages the re-
sults to present similar semantics compared with the ground
truth. In DEM, we additionally introduce a semantic prompt
gallery and a semantic prompter network. The prompter is
trained by the gallery and fix it in gesture generation. The
prompter network is responsible for representing gestures
in a semantic view. By producing similar representations
under the view of the prompter, the generated gestures are
regularized to align semantics conveyed from the ground
truth. Rather than directly connecting speech contents to
gestures that may be misaligned, SEM energizes semantic
learning by restraining both representational similarity and
semantic similarity.

Our main contributions can be summarized as follows:

1. We propose a new SEmantic Energized Genera-
tion (SEEG) framework for co-speech gesture generation.
SEEG is a semantic-aware gesture generation method that
is adept at generating gestures with better semantic expres-
siveness.

2. We propose DEcoupled Mining (DEM) and Seman-
tic Energized Module (SEM). DEM decouples semantic-
irrelevant cues in inputs and eases the learning of disparate
semantic and beat gestures. DEM encourages the network
to learn semantics and produce semantic gestures.

3. In generating semantic gestures, the efficiency and
advantages of our method are revealed by three subjective
metrics on different datasets and objective human evalua-
tions. We also find that the beat gestures may dominate
the co-speech gesture generation. Visualizations show that
SEEG achieves significant expressiveness in semantics.
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Figure 2. Examples of misalignment between semantics and gestures. Speakers may perform semantic gestures before (left) or after (right)
the target contents. This leads to the semantic gestures being hard to match in temporary corresponding to the text or audio. We highlight
the significant gestures with the orange shading.

2. Related Work

Speech-driven gesture generation is an emerging issue
that aims to generate vivid gestures based on the given
speech data. Generally, methods for this problem take the
speech data [34, 35] (audio, text, etc.) as input and pro-
duce corresponding gestures to simulate the real speaker.
This requires various knowledge understanding [33] like
human ethology [7, 22, 28, 32], linguistics [19, 27, 30],
robotics [11, 25], graphics [3, 17, 34], vision [20, 29, 34],
etc. Proposed methods should understand multi-modal and
diverse information (speech rhythm from audio, text seman-
tics, personal style from speakers’ identities, semantic con-
veyed from motions, etc.), then generate reasonable and ex-
pressive gestures.

To overcome the above challenges, various works are
proposed to explore. To understand the audio data and
bridge the audio inputs to the gestures, Taras et al. [20]
investigate the network structure to map speech acoustic
and semantic features into the feature space of 3D gestures.
Moreover, benefiting from an efficient modeling method
MoGlow which is controllable for 3D motion synthesis,
Alexanderson et al. [3] propose the style-controllable ges-
ture generation model based on the MoGlow. The pro-
posed method can generate diverse and plausible gestures
just like the actual human. Ahuja et al. [1] propose Mix-
StAGE, which disentangle the style feature with gesture
features and encodes the gestures features to the style space.
Mix-StAGE overcomes the challenge of style preservation
and generates diverse styles of gestures for different people.
As the multi-modalities involved in speech-driven gestures,
Yoon et al. [34] explore the embedding and representation
of multiple modalities for gesture generation. They con-
sider the trimodal context and construct holistic modeling
for all the data. This paper goes further toward semantic-
aware gesture generation and produces gestures with better
semantic expressiveness.

In addition, the metrics for evaluating the generated ges-
tures are also important and challenging. As the uncertainty
of human behavior, evaluating the realistic level of gener-
ated gestures compared with the actual human maybe still
an open question. Some works [1, 3, 14] rely on user stud-

ies to measure the quality of generated gestures. Rather
than the subjective evaluation from an actual human, some
works [1, 14, 29, 34] calculate the distances between gen-
erated gesture and the ground truth. In our work, besides
the evaluations mentioned above, we further provide a mea-
surement in semantic view. We introduce a new test set
named Semantic-aware testing set (SatTED) and a new met-
ric named Semantic-aware Accuracy (SAA). These provide
better evaluations of the results in the semantic aspect.

3. SEmantic Energized Generation
We propose SEmantic Energized Generation (SEEG) to

empower the learning of semantics in co-speech gesture
generation. As shown in Fig. 3, SEEG contains two parts:
DEcoupled Mining module (DEM) and Semantic Energized
Module (SEM). DEM decouples semantics from inputs and
contains two encoders for different inputs correspondingly.
The two decoders are responsible for explicitly mining in-
formation for beat and semantic gestures. Moreover, SEM
involves a semantic prompter and a gesture decoder. The
decoder provides the final outputs for gesture generation.
Then, the prompter network leverages an aligning loss for
gestures which relieves the misalignment for semantics.

3.1. Preliminary

According to the speech data, co-speech gesture genera-
tion aims to generate vivid gestures as real speakers. Some
works [21, 24, 29] synthesize body gestures, hand gestures,
lips, or face key points by taking audio, text, and speaker
identities as pre-processed inputs. In this work, we focus on
generating upper body gestures by sequentially outputting
the key points following [34, 35].

Taking the audio and text as inputs, methods are re-
quired to produce vivid speech gestures like real speak-
ers. Generally, methods in this topic also introduce person
ID and encode the ID into features. Additionally, the text
is pre-processed and represented by pre-trained word vec-
tors [6, 10, 26]. Thus, there are three parts of inputs: audio
data xa, text data xw, and ID xi. Then, the final output is the
sequential gestural data denoted as ŷ. It contains the loca-
tions of key points for gestures in every time step. Besides,
the ground truth gestures y are also extracted from videos
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Figure 3. An overview of our semantic-aware gesture generation.
It contains two parts: DEcoupled Mining Module (DEM) and Se-
mantic Energized Module (SEM). Two encoder networks (Es, Eb)
and a decoder network (D) are designed to learn beat and seman-
tic information and produce gestures comprehensively. Another
prompter network (P ) encourages the networks to learn and gen-
erate semantic gestures.

and pre-processed [34,35]. All xa, xw, y, and ŷ correspond
to the time step t.

Moreover, we focus on energizing the gestures with bet-
ter semantic expressiveness in this work. Instead of gen-
erating gestures resembling the ground truth, we emphasize
producing semantic gestures conveying similar semantics as
the ground truth.

3.2. DEcoupled Mining module

In speech gestures [4, 8, 15, 18], beat gestures are intu-
itive and relatively simple. Semitic gestures are diverse and
demand semantic understanding. These induce that the beat
cues are easier to be investigated, and the semantic gestures
may be ignored in the generation. Then, the method may be
trapped in the beat gestures. In our work, we first propose
the DEcoupled Mining module (DEM) to learn information
for semantic gestures and beat gestures separately and ex-
plicitly.

In the speech data, text corresponds to the speech content
and is related to the semantics. Meanwhile, audio data re-
flects the pronunciations, emotions, accents, beats, volume,
etc. Some factors in audio merely support semantic expres-
sion and do not convey particular semantics. Specifically,
the beat and volume of the audio correspond to the rhythm
and speed of the speech. They are semantic-irrelevant, and
the listener cannot realize the semantics only by the beat and
volume. Thus, we decouple these factors to the semantic-
irrelevant information, which leads to the beat gestures.

Specifically, as shown in Fig. 3, we decouple the input
that consists of audio amplitudes and audio onsets, which
stand for volume and beat, respectively. For volume infor-
mation, the audio data with large amplitude values possess
large volumes. We defined the volume function as:

A(xa, t) =

{
1 xa(t) ≥ 1

T

∑T
t xa(t)

0 xa(t) <
1
T

∑T
t xa(t)

(1)

where xa is the amplitude of the audio data, t is the time
step, and T is the overall length. We set A(xa, t) = 1 if the
amplitude is larger than the average and vice versa. This
is because the audio data contains noise and background
sound. The amplitude larger than the average indicates that
the speaker starts to speak apparently.

Moreover, it is difficult to capture the changing of into-
nation or speed of the speaker only using volume signals.
We introduce the onset strength envelope [12,13,23] to rep-
resent the beat information. Onset [12,13] refers to the start
points of the sound. The strength envelope [5] can indicate
the probabilities of the onset detected in the audio signal.
This can represent the beat of the speech audio. We fol-
low [5,23] to extract the onset strength envelope and denote
it as O(xa) in our work.

In DEM, two encoders Es and Eb are proposed to mine
the information for semantic and beat, respectively. In de-
tail, for beat gestures, Eb utilizes A(xa, t) and O(xa) as
inputs. For semantic gestures, Es is designed to learn from
xw and xa. Besides, as the standard settings in [1, 34], we
also add person ID xi as inputs for encoders.

The procedure of DEM can be formulated as:

zs = Es(xw, xa, xi),

zb = Eb(O(xa),A(xa), xi)
(2)

where zs and zb are the features for semantic and beat, re-
spectively. Moreover, both encoders possess similar net-
work structures. They all contain three fully-connected
layers to handle the inputs. Then, two additional fully-
connected layers and concatenation operations are utilized
to merge three kinds of inputs. Next, a four-layer GRU net-
work is designed to learn the sequential features produced
from the above fully-connected layers. More details for the
networks are displayed in the supplementary.

3.3. Semantic Energized Module

After mining information for semantic and beat gestures
in DEM, we designed a Semantic Energized Module (SEM)
to further energize semantic learning against the problem
of misalignment. First, we introduce a semantic prompt
gallery from the TED dataset [35]. Then, we propose a
semantic prompter to learn the gallery individually. The
prompter can formulate semantic representation for ges-
tures. Through the prompter, we further leverage supervi-
sions to predictions. This encourages the network to pursue
similar representations of semantics by prompter that avoids
the network learning misaligned semantics directly.

Semantic Prompt Gallery: The semantic prompt
gallery is a small text-gesture collection. It con-
tains five general classes from [4, 8, 9, 15, 18]. We
take three noticeable semantics (Listing, emphasize,
deictics) conveyed from gestures and two classes



(negative, positive) to reflect the speakers’ feel-
ings and attitudes. The gallery is denoted as G =
{CListing, CEmphasize, CDeictics, CNegative, CPositive},
where C∗ is a text-gesture set, and C∗ =
{[v1, v2, . . . , vM ]; [g1, g2, . . . , gN ]}. vi and gi denote
a word and a gesture sequence, respectively. Moreover, we
apply M words from [4,8,9,15,18] to construct the text set
for each class as v. Besides, [18] presents a versatile col-
lection and collecting method for semantically-congruent
gestures. Following [18], we collect N gesture sequences
from the TED dataset [35] for every class to formulate g.
More details will be presented in supplementary.

Semantic Prompter: We propose a semantic prompter
to learn the above gallery independently. As shown in
Fig. 4, the semantic prompter P adopts gesture data as in-
puts and learns to classify gestures into five general seman-
tic labels in the gallery. P consists of two fully connected
layers and a four-layer GRU network, in which the fully-
connected layers are utilized to process inputs and outputs.
The GRU aims to model the sequential inter-connection of
gestures. In all, the prompter can reflect the semantics of
gestures and represent the gestures in the semantic view.

Semantic Energized Learning: As shown in Fig. 3,
a gesture decoder D is proposed to aggregate both features
from Es and Eb and produce gestures as the final outputs,
which can be described as ŷ = D(zs, zb), where ŷ denotes
the final predictions. D aims to decode gestures consider-
ing both information of beat and semantic. It is constructed
by a single fully-connected network. Then, to energize se-
mantic learning, SEM leverages two kinds of supervision
for prediction ŷ: representational similarity and semantic
similarity.

For representational similarity, we constrain P to be sim-
ilar to the ground truth directly. The regression loss Lreg

and adversarial loss Ladv are applied. Lreg [34] contains
a smooth L1 loss to reduce the distances between y and
ŷ. Meanwhile, the Kullback-Leibler (KL) divergence is in-
cluded in Lreg to constrain the person ID. Besides, the same
discriminator as [34] is added to perform adversarial learn-
ing for generated gestures. This also targets the representa-
tional similarity of predictions and the ground truth [34].

More important, for semantic similarity, we further pro-
pose the semantic aligned loss Lalign. Considering the se-
mantic misalignment, indicating or annotating semantics to
particular words may not be proper. In our work, we pro-
pose to align semantics conveyed from the gestures. In other
words, we encourage the generated results to perform sim-
ilar semantic representations as ground truth gestures. To
this end, we apply the prompter P to represent gestures
of predictions and the ground truth and propose a seman-
tic aligned loss Lalign to regularize:

Lalign(ŷ, y) = |P (ŷ)− P (y)| (3)
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Figure 4. Construction and training of the semantic prompter. The
semantic prompter is learned from the semantic prompt gallery.
FC, Concat, and GRU denotes the fully-connected layer, concate-
nate operation, and GRU network, respectively. t∗ indicates the
time step of gesture data. The semantic prompter learns from the
semantic prompts and bridges general correspondences between
gestures and semantics.

where | ∗ | is the smooth L1 normalization. As P is fixed
in training, to solve the above loss function, the output ges-
tures ŷ should reveal similar semantic representations with
the ground truth y under the view of P . Lalign does not reg-
ulate the predictions to be identical with the ground truth or
particular gestures, and it requires similar semantics.

In all, the final loss function L can be formulated as:

L = Lreg + Ladv + Lalign (4)

4. Experiments
In this section, we discuss the details of SEEG and eval-

uate SEEG with various metrics in different datasets.
Implementation Details: Our network designs follow

the structures of the generator in [34] and only change some
fully-connected layers to fit the inputs. To perform a fair
comparison, all the other settings, like the optimizer, learn-
ing rate, etc., are the same with [34]. Besides, for train-
ing the prompter network, we utilize random clipping, ran-
dom resizing, and cutmix [36] to augment the gestures in
the gallery. We train the prompter network with 100 epochs
with the SDG optimizer and learning rate 0.001.

In addition, we collect the semantic gallery with M = 25
and N = 5. To be noticed, there are two significant differ-
ences between our semantic gallery and word-pose dictio-
nary in previous work [21]. 1). Only general classes for
semantics are defined. No specific words map particular
gestures. This property avoids the misalignment between
words and gestures in the gallery. 2). The gallery is only ap-
plied to train P . It is not practical and not necessary to col-
lect a comprehensive dictionary for training. The prompter
network is not responsible for recognizing all possible se-
mantics in gestures. It only needs to reflect some generally
possible semantics in the gallery.

Datasets: We test our method based on the TED
dataset [35], the current largest and standard dataset for



speech-driven gestures [34,35]. As in [34], it is constructed
based on TED videos and contains the 3D pose data ex-
tracted from the videos. The dataset also includes the
speech audio and transcribed speech text [34].

Besides, some gestures in the TED dataset are not ex-
pressive and may not convey explicit semantics. Mean-
while, some introverted speakers may not tend to provide
apparent movements in speech. To reflect the improvements
in the semantic aspect, we provide a Semantic-aware test set
(SatTED) based on the above dataset in [34]. Specifically,
we re-rank the testing set of the TED dataset based on the
confidences of P and collect about the top 50% data as Sat-
TED. The original test set in [34] contains 25,930 samples.
Our SatTED includes 12,000 samples and more than 7.5
hours. We compare methods in the SatTED and further dis-
cuss the superiority of our method in the semantic aspect.

Evaluation Metrics: We evaluate our method based on
three metrics:

1) FGD: evaluating the distances between the features
of predictions and the ground truth. It robustly reflects the
similarity between gestures in appearances.

2) Diversity metrics [16]: the measurement of diversity
and flexibility. As expressive speakers tend to provide vari-
ous gestures to support their expressions [15,18], this metric
can reflect the naturalness and semantic correlation to some
degree.

3) Semantic-Aware Accuracy (SAA): we additionally
propose a Semantic-Aware Accuracy (SAA) as the mea-
surement for semantic expressiveness. With the semantic
prompter, we can label the predicted gestures for semantic
classes. Meanwhile, for the speech content, the semantic
label can be assigned by voting. For every word in a sen-
tence of the speech, we search the most similar description
v in the gallery and assign the corresponding class C∗ as
the label of this word. After voting for every word, we se-
lect the class with the highest voting value as the label for
the current sentence. Then, with the labels of gestures and
sentences, we calculate the accuracy as SAA.

It is worth noting that Lalign supervised the semantic
expressions of predicted gestures and the ground truth ges-
tures, which avoid the problem of misalignment. It does
NOT supervise that the gestures should correspond to the
text. Meanwhile, SAA describes the text-gesture correla-
tion. This is a higher requirement since the ground truth
may also not reflect the semantics closely. SAA measures
the semantic expressions in an ideal condition that all ges-
tures are semantic gestures.

Subjective Evaluation: We perform the user study
through actual humans to evaluate the gestures. We random
sample 20 pieces of speech audio, text, and the gestures of
actual humans, Trimodal Context [34], and ours. Then, we
publish these as the questionnaire for 50 different people
to grade the gestures by three factors: naturalness, speech-

Methods FGD (↓)
Seq2Seq [35] 18.154
Speech2Gesture [14] 19.254
Language2pose [2] 22.083
Trimodal Context [34] 3.729
Ours (Eb + D only) 3.751
Overall SEEG 6.244

Table 1. The performance of different methods for co-speech ges-
ture generation in the TED dataset. We adapt FGD as the evalu-
ating metrics. The performances are comparable even only using
encoder Eb and decoder D in our method. Note that FGD may
NOT well reflect the gesture semantics. The evaluations on ges-
ture semantics are presented in other tables.

gesture correlation, and gesture frequency. The factors are
commonly used in gesture evaluation as in [31]. The range
of grades is from 0 to 10. We collect all the questionnaires
and calculate the average marks in experiments.

4.1. Quantitative Evaluation

Comparisions with state-of-the-art models: We first
compare the values of FGD based on the TED dataset. We
train the encoder Es with decoder D individually, generat-
ing gestures based on semantic-irrelevant data without the
prompter network. This corresponds to the generation of
beat gestures. As shown in Table 1, With Es + D only,
our result compares favorably to state-of-the-art methods in
FGD, which utilizes comprehensive data from speech. This
indicates that the network can achieve similar FGD to the
recent method without mining any semantic cues. Only by
mining the semantic-irrelevant data, the network can ‘pre-
tend’ to produce meaningful gestures. Though we expect
the network to learn semantics and produce expressive se-
mantic gestures, the networks can also perform well without
learning any semantics. This reveals two defeats in current
research: 1). The beat gestures may dominate the dataset.
Meanwhile, the semantic cues are hard to be mined with the
comprehensive inputs. Thus, decoupled learning is valu-
able. DEM separately learn cues for beats and semantics,
which guide the network not to be trapped in beat gestures.
Besides, rather than the method side, a new sub-set with a
larger ratio of semantic gestures is also required to uncover
the semantic expressiveness of results. 2). FGD may be
solvable in the current dataset by merely considering beat
gestures. Merely measuring the distances between predic-
tions and the ground truth is not enough. More semantic-
aware measurements should be introduced. To solve the
above defeats, the SatTED dataset and SAA are proposed
in our work.

Meanwhile, our overall method in FGD also outperforms
previous methods with large gaps. Though slightly lower
than Es + D, our overall method also achieves competi-
tive results than the current state-of-the-art. Since SEEG



Dataset Method FGD (↓) Diversity (↑) SAA (↑)
Emphasize Listing Deictics Positive Negative Average

TED
Real Gesture - 1.405±0.058 52.135 41.028 65.515 19.388 27.255 37.688

Trimodal Context [34] 3.729 0.759±0.029 32.496 43.203 51.647 17.021 29.600 30.286
SEEG 6.244 1.059±0.045 40.438 44.465 66.116 19.004 27.246 36.851

SatTED
Real Gesture - 1.271±0.056 54.709 64.169 82.587 22.522 29.052 43.904

Trimodal Context [34] 4.505 0.782±0.037 32.928 55.612 61.844 12.833 21.496 30.956
SEEG 7.451 1.118±0.049 44.518 52.322 70.461 21.322 27.763 38.457

Table 2. Comparison of all metrics in the TED dataset and SatTED dataset. Our method shows better performances significantly in some
semantic-relevant metrics like diversity and SAA. Real Gestures indicate the gestures of real humans in the ground truth. ± means 95%
confidence interval. ↑ indicates that higher values are better, and ↓ means lower values are better.

method is energized by SEM and tends to be more expres-
sive and diverse, it may not completely follow the ground
truth and focus on semantics.

Semantic-aware Evaluation: We compare all the
metrics in two datasets as in Table 2. We also display
all the semantic-aware accuracy in every class from the
gallery. Results demonstrate that our method shows sig-
nificant improvements in diversity and SAA than Trimodal
Context [34], the current state-of-the-art in co-speech ges-
ture generation.

Specifically, though the values of FGD are slightly lower,
the diversity of our results is far better than [34]. With
the SatTED dataset, the diversity of our method even ap-
proaches the real gestures of ground truth. Meanwhile, the
semantics conveyed in our results are more recognizable
and significant. Almost all values of SAA in every class
and the average are better than Trimodal Context [34]. All
these results show that SEEG is comparable in stimulating
the gestures of actual humans and capable of understand-
ing the semantics. Besides, SEEG achieves higher results
than the ground truth in some categories of SAA since the
ground truth may be beat gestures and do not respond to
corresponding semantics.

In addition, the SatTED possesses a larger ratio of se-
mantic gestures and is hard to be solved by the current
method. As shown in Table 2, our method presents more
significant improvements in this dataset. Results demon-
strate that our method effectively boosts semantic learning
for gestures and conducts a better semantic-aware genera-
tion.

Effect of Semantic Decouple: In our work, we decou-
ple the semantics from inputs and enforce the networks to
mine information for semantic and beat gestures separately.
As in method design, we expect to achieve semantic ges-
tures with Es + SEM, beat gestures with Eb + D only, and
the total outputs considering both sides (Overall). In this
section, we experiment and verify the three parts as in Ta-
ble 3. Specifically, we train Eb + D only with Lreg and
Ladv. Es + SEM is trained with Es + D with L. Then,
to show the interactions between Es and Eb in the overall
pipeline, we take the overall SEEG training from scratch

Dataset Method FGD (↓) Diversity (↑) SAA (↑)

TED

Eb + D only 3.751 0.984±0.044 30.022
Es + SEM 7.805 1.113±0.051 37.259

Overall Eb + D 5.472 0.901±0.045 30.597
Es + D 7.320 1.127±0.047 39.981

SatTED

Eb + D only 5.114 0.922±0.384 33.986
Es + SEM 9.291 1.164±0.049 44.218

Overall Eb + D 5.490 0.990±0.326 34.344
Es + D 6.797 1.128±0.049 46.533

Table 3. Comparison of different training manners. Eb + D only
indicates that training individually with Es and D without P . Es

+ SEM denotes only training without encoder Eb. Overall means
training with the complete method. Meanwhile, Eb + D indicates
inferring the overall method with padding features from Eb as 0.
Es + D is inferring with padding features from Es.

with all modules and separately test each module. As Ta-
ble 3, for Eb + D overall, we test the results by padding
features zb from Eb with zero. Similarly, Es + D in overall
pads features zs with zero.

As shown in Table 3, Eb + D only achieves higher per-
formances in FDG metrics but shows significant decreases
in diversity and SAA since it is unavailable to learn se-
mantics with semantic decoupled inputs. Meanwhile, the
isolated training with Es and D tends to learn semantics
only and may not perform similarly to the ground truth.
This leads the results to obtain significant improvements in
SAA but becomes worse in FGD. Moreover, in the over-
all pipeline, similar regularities also occur compared with
training individually. In comparison, the learning of two
parts would not be too radical. As a part of the overall
pipeline, both Eb and Es acquire improvements.

Ablation Study for Semantic Prompter: SEM relies
on the semantic prompter to learn semantics in gestures.
The impact of the prompter network for semantic learning
is explored in this section. We experiment with the SEM
and overall pipeline with or without a semantic prompter,
respectively. As shown in Table 4, without the semantic
prompter, both semantic-aware performances like diversity
and SAA degrade. Meanwhile, removing the prompter net-
work leverages the improvements in FGD. The individual
Es + D without a prompter network performs similarly to
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Figure 5. Examples of generated gestures. Our method shows better semantic expressiveness and conspicuous and reasonable responses to
corresponding words. We highlight the significant gestures for [34] and ours with the blue and orange shading, respectively.

Method Metrics
FGD (↓) Diversity (↑) SAA (↑)

Overall w/o Ts 4.937 1.004±0.037 30.920
Es + D w/o Ts 3.915 0.854±0.037 30.216

Table 4. Ablation study for effect of the semantic prompter. With-
out the semantic prompter, the performances of diversity and SAA
degrade.

the method in [34].

4.2. Qualitative Evaluation

Subjective Evaluation by User Study: We collect
questionnaires from different volunteers and compute the
average scores in different factors. The factors are all reg-
ular questionnaire items as in [31]. The statistical results
are shown in Fig. 6. To investigate the performances of
parts in our method, we train Eb + D only as of the beat
gestures of our method (Beat), Eb + SEM as the semantic
gestures of our method (Semantic), and the entire method
(Overall), respectively. We compare our method with the
current state-of-the-art and the ground truth. In compari-
son, our method shows significant improvements in all three
factors. Moreover, the semantic gestures perform worse in
naturalist and frequency but achieve remarkable advantages
in speech-gesture correlation. This corresponds to the de-
sign of SEM, which focuses on semantic learning and may
deviate from the ground truth.

Visualization: We showcase the results of our method
and compare them with the current state-of-the-art [34]. In
examples of generated gestures, as shown in Fig. 5, signif-
icant responses occur corresponding to some words (e.g.,
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Naturalness Speech-gesture correlation Gesture-Frequency

Figure 6. User study for synthesized gestures. The ground truth,
current state-of-the-art, and our methods are compared based on
three evaluating factors.

clearly, at the beginning, quit a, available, easy, first step).
The visualizations prove that our method learns semantics
better and generates vivid gestures with semantic expres-
siveness.

5. Conclusion

In this paper, a novel method for semantic-aware gesture
generation is proposed. The proposed method contains two
parts: DEcoupled Mining module (DEM) and Semantic En-
ergized Module (SEM). DEM decouples semantics from in-
puts and forces the network to mine information for seman-
tic and beat gestures. SEM contains a semantic prompter to
leverage semantic-based supervision for the networks and
produces semantic gestures. Experiments in various met-
rics, user study, and visualizations prove that the proposed
method learns semantics better and produces semantic ges-
tures corresponding to the speech content.
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