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A sentence is a list of words.

(a) text: 1D word list (b) image: 2D pixel grid (c) 3D point cloud/set (d) protein: 3D point list

Figure 1. Data structure comparison of text, image, point cloud and protein. (a) Texts are regular 1D lists of words. The position is the
word’s sequential order in the text and the feature is the word itself. (b) Images are regular 2D grids of pixels. The position is the row and
column where the pixel is located and the feature is the color. (c) Point clouds are irregular 3D point sets. The position is the 3D coordinate
and the feature is the point attributes. (d) Proteins can be seen as 3D point lists. The position of an amino acid involves a regular 1D
sequential order and an irregular 3D coordinate. The feature is the amino acid (residue) type.

Abstract

Deep neural networks on regular 1D lists (e.g., natural
languages) and irregular 3D sets (e.g., point clouds) have
made tremendous achievements. The key to natural lan-
guage processing is to model words and their regular or-
der dependency in texts. For point cloud understanding, the
challenge is to understand the geometry via irregular point
coordinates, in which point-feeding orders do not matter.
However, there are a few kinds of data that exhibit both reg-
ular 1D list and irregular 3D set structures, such as proteins
and non-coding RNAs. In this paper, we refer to them as
3D point lists and propose a Transformer-style PointListNet
to model them. First, PointListNet employs non-parametric
distance-based attention because we find sometimes it is the
distance, instead of the feature or type, that mainly deter-
mines how much two points, e.g., amino acids, are corre-
lated in the micro world. Second, different from the vanilla
Transformer that directly performs a simple linear transfor-
mation on inputs to generate values and does not explicitly
model relative relations, our PointListNet integrates the 1D
order and 3D Euclidean displacements into values. We con-
duct experiments on protein fold classification and enzyme
reaction classification. Experimental results show the effec-

tiveness of the proposed PointListNet.

1. Introduction
The essence of deep learning is to capture the structure

of a certain kind of data via artificial neural networks. Usu-
ally, an element of data includes a position part and a feature
part. According to the type of element position, data exhibit
different structures. Various deep neural networks are pro-
posed to model those structures and have made tremendous
achievements.

For example, texts are 1D lists of words. As shown in
Fig. 1(a). The position of a word is its order in the text
and the feature is the word itself. To capture the structure
of texts or the dependency of words, 1D convolutional neu-
ral networks (CNNs) [3, 30, 58], recurrent neural networks
(RNNs) [9, 26, 39] and Transformers [13, 49] are widely
used. A digital image can be seen as a 2D rectangular grid
or matrix of pixels, as shown in Fig. 1(b). Each pixel has
a 2D position and is associated with a feature of color or
other attributes. In this case, 2D CNNs are usually used to
model image structure [23, 33, 46]. Recently, Transformers
are also employed for image understanding [15].

Recently, 3D point cloud/set processing is attracting



more and more attention from the deep learning community.
Different from texts or images, in which the orders of words
or the positions of pixels are regular (words or pixels are dis-
tributed uniformly in texts or images), the 3D coordinates
of points are irregular (points are distributed unevenly in
3D Euclidean space), as shown in Fig. 1(c). To capture the
irregular structure of point clouds, deep neural networks,
such as multilayer perceptrons (MLPs) [42, 43, 45], convo-
lutions [48, 56] and Transformers [22, 62], need to not only
effectively exploit 3D coordinates for geometry understand-
ing but also be invariant to permutations of the input set in
point-feeding order.

Besides regular 1D lists of words, 2D grids of pixels
and irregular 3D point sets, data may exhibit hybrid struc-
tures. For example, proteins are made up of amino acids.
As shown in Fig. 1(d), those amino acids are linked by pep-
tide bonds and form a chain. Therefore, proteins include
a 1D list data structure. Because amino acids are arranged
uniformly in the chains, the list structure is regular. In ad-
dition to the 1D sequential order in the peptide chain, each
amino acid is with a 3D coordinate, which specifies its spa-
tial position in the protein. Those 3D coordinates describe
a geometry structure. Similar to point clouds, the geome-
try structure of proteins exhibits irregularity. Therefore, the
data structure of proteins involves a regular 1D list and an
irregular 3D set. In this paper, we refer to this data struc-
ture as 3D point list. Point lists also exist in other polymers,
such as non-coding RNAs. Because the function of proteins
or non-coding RNAs is based on their structures, modeling
3D point lists can facilitate a mechanistic understanding of
their function to life.

In this paper, we propose a Transformer-style network,
named PointListNet, to capture the structure of 3D point
lists. First, different from the vanilla Transformer [15,
49], which calculates self-attention by performing compu-
tationally expensive matrix multiplication on inputs, our
PointListNet employs a simple non-parametric distance-
based attention mechanism because we find sometimes it
is mainly the distance, instead of the feature or type, that
determines how much two elements, e.g., amino acids, are
correlated in the micro world. Second, because structures
are relative, which is independent of the absolute sequential
order or the absolute Euclidean coordinate, our PointList-
Net integrates the 1D order and 3D Euclidean displace-
ments into values. This is substantially different from the
vanilla Transformer that directly performs a simple linear
transformation on absolute positional embeddings and input
features to generate values, which does not explicitly model
relative distance or direction. To evaluate PointListNet, we
conduct experiments on protein fold classification and en-
zyme reaction classification and achieve new state-of-the-
art accuracy. The contributions of this paper are fivefold:

• Among the early efforts, we investigate a range of

point cloud methods for protein modeling.
• We propose a Transformer-style network, i.e.,

PointListNet, for 3D point list modeling.
• We replace self-attention with non-parametric

distance-based attention, which is more efficient
and effective to achieve the correlation among
microparticles in some cases.

• We integrate relative structure modeling into Trans-
former and employ regular and irregular methods to
capture the sequence and geometry structures, respec-
tively.

• We conduct extensive experiments on two protein
tasks and the proposed method significantly outper-
forms existing methods.

2. Related Work
Deep Learning on 3D Point Sets. Deep learning on point
sets/clouds has been widely investigated in several prob-
lems, including shape classification, object part segmenta-
tion, scene semantic segmentation, reconstruction and ob-
ject detection [8,10,17,19,22,36–38,41–43,48,53,56,59].
Most recent works aim at directly manipulating 3D points
without transforming coordinates into regular voxel grids.
Since a point cloud is essentially a set of unordered points
and invariant to permutations of its points, deep learning on
point clouds mainly focuses on designing effective opera-
tions that do not rely on point orders. Because point cloud
methods do not involve sequence modeling, directly apply-
ing them to 3D point lists, e.g., proteins, may lead to inferior
accuracy.
Deep Learning on Proteins. Proteins exhibit multi-level
structures. Deep-learning-based methods for protein rep-
resentation learning mainly focus on the 1D primary and
the 3D tertiary structures understanding. The primary struc-
ture refers to the sequence of amino acids in the polypeptide
chain. The tertiary structure refers to the three-dimensional
structure created by a single protein molecule (a single
polypeptide chain). For the primary structure, because acids
in polypeptide chains can be seen as words in sentences,
approaches for natural language processing can be used for
sequence-based protein representation learning [1,5,27,34,
35, 44, 44, 47]. For the tertiary structure, the 3D geomet-
ric information of amino acids or atoms is used to enhance
protein representation [2,4,7,12,21,25,28,29,54,60]. Dif-
ferent from these methods, we propose a Transformer-style
method to model primary and tertiary structures for pro-
teins. Moreover, we employ different approaches to capture
the 1D and 3D structures.
Transformer. Impressive progress has been made on natu-
ral language processing due to the success of Transformer
networks [11, 13, 49, 57]. In computer vision, the commu-
nity has used self-attention or Transformer to model im-
ages in a non-local manner [6, 16, 32, 52, 61]. In particu-



lar, Zhao et al. proposed a Point Transformer [62] to model
point clouds. Fan et al. proposed a P4Transformer [18]
for point cloud video understanding. Lai et al. proposed
a Stratified Transformer [36] for point cloud segmenta-
tion. Feng et al. proposed a Structure Embedding Trans-
former (SEFormer) [20] for 3D object detection. Wang et
al. proposed a Relation-Enhanced Transformer [51] for
text-based point cloud localization. Inspired by these
methods, we propose a Transformer-style PointListNet for
3D point list modeling. Different from these methods,
we replace learning-based self-attention with rule-based
distance-attention, thus more efficient to achieve the cor-
relation among microparticles. Moreover, we integrate rel-
ative structure modeling into Transformer and employ reg-
ular and irregular methods to capture the sequence and ge-
ometry structures, respectively.

3. Proposed Point List Network

In this section, because our method is inspired by Trans-
former, we first briefly review the vanilla Transformer
and discuss its potential limitation for 3D point list mod-
eling. Then, we present the proposed Point List Net-
work (PointListNet) in detail. Finally, we incorporate our
PointListNet into deep neural networks to address two pro-
tein recognition tasks, i.e., protein fold classification and
enzyme reaction classification.

3.1. Vanilla Transformer

Transformer has an ability to merge related elements or
regions based on their similarities, semantics or relations so
that each position has a larger receptive field to collect more
information from its related elements or regions. Specifi-
cally, suppose F ∈ RN×C is the input features of N po-
sitions, where C is the number of feature channels, and
T ∈ RN×1 is their positions. As shown in Fig. 2(a), Trans-
former first integrates absolute positional embedding into
the input features,

I = Embedding(T ) + F . (1)

Second, it performs two individual linear transformations
on I to generate queries Q ∈ RN×C′′

and keys K ∈
RN×C′′

, where C ′′ is the dimension of queries and keys.
Then, the softmax function is applied to the scaled dot-
product attention of Q and K to generate the attention
weights A ∈ RN×N ,

Q = I ·Wq, K = I ·Wk, A = softmax(
Q ·KT

√
C′′

), (2)

where · is matrix multiplication and Wq,Wk ∈ RC×C′′
.

Third, Transformer employs another linear transformation
on I to generate values V ∈ RN×C′

, where C ′ is the value

dimension. Finally, the output is computed as a weighted
sum of the values,

V = I ·Wv, Ot =

N∑
t′=1

αtt′vt′ , (3)

where Wv ∈ RC×C′
and O ∈ RN×C′

. The αtt′ denotes
the attention weight of the t′-th position on the t-th position
in A and v′

t denotes the value at the t′-th position in V .
The attention weights A can indicate how much two el-

ements are correlated in the input. Based on self-attention
and global weighted sum, Transformer is able to adaptively
search related elements or regions, thus being flexible to
capture the structure in data. However, the vanilla Trans-
former does not model relative relations, such as direction
or distance. Therefore, it may not properly model the 1D
sequence and 3D geometry structures in point lists.

3.2. PointListNet

A 3D point list can be represented by 1D sequence orders
T ∈ RN×1, 3D geometry coordinates P ∈ RN×3 and the
associated features F ∈ RN×C . For example, a protein can
be seen as a point list because each amino acid in it has a
1D sequential order t ∈ {1, · · · , N} in the peptide chain
and a 3D coordinate pt ∈ R1×3 that specifies its spatial
location and a feature, e.g., the amino acid type or other
attributes ft ∈ R1×C . Inspired by Transformer, we propose
a PointListNet for 3D point list modeling.

3.2.1 Non-parametric Distance-based Attention

When employing Transformer for protein modeling, we find
that it may be the 1D and 3D distances, instead of their fea-
tures, that mainly determine amino acids’ correlations. This
is significantly different from the data in the macro world.
In the macro world, 3D objects and their local parts have a
strong and discriminative semantic pattern. For example, in
a chair, there are chair legs and a chair seat. For a human
body, there are the head, hands, arms, etc. Those seman-
tic patterns are beneficial for networks to understand 3D
structure via complicated mechanisms, e.g., self-attention.
However, for proteins, there may not exist such semantic
patterns. The main relations between amino acids are dis-
tance and direction, i.e., displacement. In this case, simpler
attention mechanisms may be effective enough. Therefore,
we replace the self-attention in the vanilla Transformer with
a non-parametric distanced-based attention mechanism.

Suppose D1d ∈ RN×N is the distance matrix of 1D
point orders where the order distance between the t-th point
and the t′-th point is defined as |t − t′| and D3d ∈ RN×N

is the geometry distance matrix where the distance between
the two points is defined as

√
∥pt − pt′∥2. Then, to re-

duce the influence of different protein sizes, we normalize
the two distances, i.e., D1d/L and D3d/R, where L and R
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Figure 2. (a) Vanilla Transformer first adds the absolute positional embeddings into the input features and then performs three simple
linear transformations for self-attention and value, in which the relative relations are not explicitly encoded. (b) Our PointListNet employs
a non-paramedic distance-based attention mechanism. Moreover, we integrate the 1D and 3D displacement information into values to
model the relative relations between points. (c) When performing 1D-3D-displacement-aware linear transformations, we use different
groups of parameters (i.e., W1−N ,W2−N , · · · ,W0, · · · ,WN−2,WN−1) to reflect regular 1D order displacements but directly encode
3D geometry displacements (append to point features) due to their irregularity.

are the longest sequence and geometry distances from the
center to the farthest points, respectively. Third, we employ
a non-parametric function g to calculate the attention,

A = g(
D1d

L
,
D3d

R
). (4)

Here, g is a decreasing function so that closer points in
the sequence and geometry spaces have higher attention
weights. Moreover, the output attention map A should be
in (0, 1)N×N . In this way, A can be seen as a soft mask or a
soft receptive field. The attention weight αtt′ ∈ (0, 1) in A
can indicate how much the t-th and t′-th points are related.

There can be many methods to implement the g func-
tion. In this paper, we implement the function as 0.5 −
0.5 tanh

((
λ(D−1)+0.5

)
/
√
D × (1−D)

)
, where D =

(D1d/L)× (D3d/R) and λ ∈ [3, 5].

3.3. 1D-3D-Displacement-Aware Value

Although the attention weight α can reflect the corre-
lation degree of two points, as a scalar, it cannot encode
more information about relative relations, such as direction,
which are important for structure modeling. Therefore, we
propose to integrate the 1D and 3D displacement informa-
tion into values.

To do so, we follow the principle of convolution. To en-
code the distance and direction information, i.e., displace-
ment, convolution performs different linear transformations
on the features of neighbors based on displacements. For
example, for a convolution with kernel size 3 × 3, there
are 9 linear transformations for the displacements from the
center to its neighbors. Motivated by convolution, we en-
code relative relations with the 1D-3D-displacement-aware
linear transformations,

vtt′ = ft′ ·Wt′−t,pt′−pt , (5)

where Wt′−t,pt′−pt
∈ RC×C′

is the parameters for the lin-
ear transformation of 1D-3D-displacement (t′−t,pt′−pt).

However, due to the continuity of point coordinates,
there would be countless possible 3D geometry displace-
ments, even in an extremely small area. In this case, we
cannot assign an individual W for each geometry displace-
ment. To address this problem, we follow PointNet++ [43]
to treat 3D displacement as a part of feature, and concate-
nate point features and 3D displacements for modeling,

vtt′ = [ft′ ,pt′ − pt] ·Wt′−t, (6)

where Wt′−t ∈ R(C+3)×C′
and [·, ·] denotes concatenation.

In this way, our 1D-3D-displacement-aware linear transfor-



Table 1. Comparison with 3D point cloud methods, i.e., PointNet++ [43], DGCNN [53], Point Transformer [62] and PointMLP [38], on
protein fold classification and enzyme catalytic reaction classification (accuracy %). Experiments are conducted by ourselves.

Method Modeling
Protein Fold Classification Enzyme Reaction

Fold Superfamily Family Classification

PointNet++ [43] f ′
t = MAX

∥pt′−pt∥≤r
MLP

(
[ft′ ,pt′ − pt]

)
26.0 37.7 93.8 78.4

DGCNN [53] f ′
t = MAX

ft′∈TopK(ft)
MLP

(
[ft′ ,ft′ − ft]

)
25.6 39.2 94.4 80.1

Point Transformer [62]

f ′
t =

∑
∥pt′−pt∥≤r

αtt′ ×
(
W3 · ft′ + δtt′

)
δtt′ = MLP(pt − pt′) 26.4 40.1 92.0 81.3

αtt′ = MLP(W1 · ft −W2 · ft′ + δtt′)

{αtt′} = softmax
(
{αtt′}∥pt′−pt∥≤r

)
f ′
t = MLP

(
MAX

ft′∈TopK(ft)
MLP(ftt′)

)
PointMLP [38] ftt′ = α⊙ ft′−ft

δ+ϵ
+ β 26.8 38.8 94.2 79.7

δ =
√

1
K×N×C

∑N
i=1

∑K
j=1(ft′ − ft)2

PointListNet (ours)
3D Coordinate 36.8 55.3 97.4 84.5

1D Order & 3D Coordinate 55.2 76.4 99.5 88.0

mations take advantage of both the regularity of the 1D se-
quence structure and the irregularity of the 3D geometry
structure.

However, the above implementation is not rotationally
invariant. Rotating point lists may lead to different rep-
resentations. For micro-particles, there is no definition or
concept for the up, down, left and right directions. There-
fore, rotationally invariant is important for modeling them.
Inspired by [24], we replace the 3D displacement encoding
in Eq. (6) with rotationally invariant encoding [28].

Note that because of the goal to capture the relative
structure, the values in our PointListNet is a 3D tensor
(V ∈ RN×N×C′

), instead of a 2D matrix (V ∈ RN×C′
)

in the vanilla Transformer. Finally, as shown in Fig. 2(c),
the global weighted sum is performed on the values V to
obtain the new feature,

f ′
t =

N∑
t′=1

αtt′vtt′ , (7)

where f ′
t ∈ R1×C′

. In this way, the point features are
updated by collecting the information from their related
points, which are donated as F ′ ∈ RN×C′

.

3.4. Hierarchical Architecture

Although our PointListNet models 3D geometry
coordinates in an irregular manner, which avoids em-
ploying countless parameters, capturing the dependency

of 1D sequence orders still requires many parame-
ters. For a point list with N points, PointListNet
needs 2N − 1 groups of independent parameters, i.e.,
{W−(N−1),W−(N−2), · · · ,W0, · · · ,WN−2,WN−1},
which is too many for most devices. Moreover, as shown
in Fig. 2(c), when two points are too far away, their
correlation tends to be 0. It is not necessary to capture the
structure of every two points. Therefore, following Point
Transformer [62], we employ the local modeling technique
to limit the attention range by defining a sequence distance
threshold l and a geometry distance threshold r. The two
distances for the attention calculation are also normalized
based on l and r, respectively.

To extract global representations for classification, we
downsample points as the network deepens. In this way, we
can construct a hierarchical or pyramid architecture. At last,
we add a classifier for point list recognition tasks.

4. Experiments

4.1. Evaluation Tasks and Datasets

Following [24,25,60], we evaluate the proposed method
on two recognition tasks: protein fold classification and en-
zyme reaction classification. Mean accuracy is used as the
evaluation metric.
Protein Fold Classification. Protein fold classification
is important in the study of the relationship between pro-



Table 2. Accuracy (%) of protein fold classification and enzyme catalytic reaction classification. *Results are from [25]. †Results are
from [60].

Level Input Method
Protein Fold Classification Enzyme Reaction

Fold Superfamily Family Classification

3D Coordinate
GCN [31]* 16.8 21.3 82.8 67.3

Atom Level EdgePool (GNN)* [14] 12.9 16.3 72.5 57.9
(Molecule) 3D CNN [12]* 31.6 45.4 92.5 72.2

3D Coordinate & Bond IEConv [25] 45.0 69.7 98.9 87.2

1D Order

1D ResNet [44]† 10.1 7.21 23.5 24.1
DeepFS (1D ResNet)* [27] 17.0 31.0 77.0 70.9
DeepFS (1D CNN)* [27] 40.9 50.7 76.2 -
LSTM [44]† 6.41 4.33 18.1 11.0
Transformer [44]† 9.22 8.81 40.4 26.6

Residue Level 3D Coordinate GAT [50]† 12.4 16.5 72.7 55.6

(Protein)

1D Order & 3D Coordinate

GraphQA [4]* 23.7 32.5 84.4 60.8
GVP [29]† 16.0 22.5 83.8 65.5
IEConv [24] 47.6 70.2 99.2 87.2
GearNet [60] 28.4 42.6 95.3 79.4
GearNet-IEConv [60] 42.3 64.1 99.1 83.7
GearNet-Edge [60] 44.0 66.7 99.1 86.6
GearNet-Edge-IEConv [60] 48.3 70.3 99.5 85.3

PointListNet (ours) 55.2 76.4 99.5 88.0

tein structure and protein evolution. The fold classes indi-
cate protein secondary structure compositions, orientations
and connection orders. We follow [25] to conduct protein
fold classification on the training/validation/test splits of the
SCOPe 1.75 data set of [27], which in total contains 16,712
proteins with 1,195 fold classes. The 3D coordinates of the
proteins were collected from the SCOPe 1.75 database [40].
The data set provides three different evaluation scenarios.
1) Fold, in which proteins from the same superfamily are
not used during training. 2) Superfamily, in which proteins
from the same family are not provided during training. 3)
Family, in which proteins of the same family are available
during training.

Enzyme Reaction Classification. Enzyme reaction clas-
sification can be seen as a protein function classification
task, which is based on the enzyme-catalyzed reaction ac-
cording to all four levels of the Enzyme Commission (EC)
number [55]. We use the dataset collected by [25], which
includes 384 four-level EC classes and 29,215/2,562/5,651
proteins for training/validation/test, respectively.

4.2. Training Setup

The network is trained with the SGD optimizer for 500
epochs. The batch size is set to 8. The learning rate is set
to 0.01 and decreases by 10% after the 300 and 400 epochs,
respectively.

Table 3. Comparison between self-attention and our distance-
based attention on protein fold classification and enzyme catalytic
reaction classification (accuracy %).

Method
Fold Classification Enzyme

Fold Superfamily Family Reaction

w/o Attention 52.0 73.2 99.1 87.2
1 head 50.3 71.0 98.8 86.2

Self-Attention 2 heads 51.0 71.6 99.1 86.7
4 heads 50.5 71.1 98.8 86.4

Distance-based Attention 55.2 76.4 99.5 88.0

4.3. Comparison with Point Cloud Methods

The residue-level 3D structure of proteins can be seen
as 3D point lists. If the sequence structure is neglected,
the amino acids of a protein form a point cloud. There-
fore, existing methods for point cloud processing can be
applied to protein modeling. However, point cloud meth-
ods are largely ignored in existing works. Most of them are
based on existing graph-based methods. To fill this gap, we
investigate point cloud methods for protein modeling and
compare our method with them. In this paper, we consider
three point cloud methods: PointNet++ [43], DGCNN [53],
Point Transformer [62] and PointMLP [38]. For DGCNN
and PointMLP, we follow the original paper to concatenate
point coordinates and features as the input of the network.
These two methods employ TopK to search K neighbors for



Table 4. Efficiency Comparison between self-attention and our
distance-based attention.

Efficiency w/o Attention Self-Attention Distance-based

# Parameters 34.0 M 38.6M 34.0 M
Running Time 11.20 ms 13.56ms 11.23 ms

each query point. In the formulation of PointMLP, α and β
are two learnable parameters. We conduct the experiments
by ourselves.

The modeling approaches of these point cloud methods
and the experimental results are shown in Table 1. Even
only with 3D geometry structure, PointListNet still signifi-
cantly outperforms the point cloud methods. There may be
two reasons leading to the superior of our methods. First,
those point cloud methods do not employ effective attention
mechanisms to capture point correlations. Second, they are
not rotationally invariant.

4.4. Comparison with the State-of-the-Art

As a kind of large biomolecules and macromolecules,
proteins can be modeled in two levels. The first one is the
atom level, in which the 3D coordinates and types of atoms
are used for the protein’s geometry structure understanding
via GNNs [14, 31], 3D CNNs [12], etc. In addition to the
atom coordinate and type information, covalent or hydrogen
bonds can also be used to enhance the representation [25],
which can be seen as the topology structure. We refer to the
input of such kind of methods as “3D coordinates & bond”.

The second level is based on amino acids or residues,
which is referred to as the residue level in this paper. At this
level, we compare our method with existing “1D order”,
“3D coordinate” and “1D order & 3D coordinate” methods.
They are as follows,

• 1D order. Because proteins are lists of amino acids, 1D
CNN [44], LSTM [44] and Transformer [27,44] can be
employed. The networks in [44] consist of two layers
while those in [27] contain 10 layers.

• 3D coordinate. To model the irregular 3D geometry
structure, graph neural networks are wildly used in ex-
isting protein-related works, e.g., GAT [50].

• 1D order & 3D coordinate. To model the sequence
and geometry structures together, existing methods,
e.g., GraphQA [4], GVP [29], IEConv [24] and Gear-
Net [60], process geometric and sequential displace-
ments together, e.g., via concatenation, or model the
sequence structure in a similar way to geometry mod-
eling, i.e., directly encoding sequential displacements,
thus neglecting the regularity of the 1D structure.

Results are shown in Table 2. Note that none of the ex-
isting methods achieved state-of-the-art accuracy on both

Table 5. Impact of 1D and 3D structure modeling on protein fold
classification and enzyme catalytic reaction classification (accu-
racy %).

Structure
Fold Classification Enzyme

Fold Superfamily Family Reaction

1D Order 13.1 18.7 86.4 70.0
3D Coordinate 36.8 55.3 97.4 84.5
1D Order & 3D Coordinate 55.2 76.4 99.5 88.0

two tasks. In contrast, our method significantly outperforms
all the existing methods. For example, on the superfamily
fold classification, our PointListNet outperforms the previ-
ous state-of-the-art method, i.e., GearNet-Edge-IEConv, by
6.1%. This demonstrates the effectiveness of the proposed
PointListNet that employs regular and irregular approaches
for sequence and geometry modeling, respectively.

The residue-level methods outperform the atom-level
methods. This may be because proteins usually contain
thousands of atoms and it is challenging to model the geom-
etry structure based on so many points. In constant, a typ-
ical protein is usually made up of 300 amino acids. There-
fore, protein modeling via amino acids is easier than via
atoms.

4.5. Ablation Study

4.5.1 Impact of Distance-based Attention

One difference between our PointListNet and the vanilla
Transformer is that we employ a non-parametric distance-
based attention mechanism. To evaluate the effectiveness
of the proposed distance-based attention, we compared it
with the self-attention in the vanilla Transformer. We also
compare the lower-bound method, which does not employ
attention. Because we follow Point Transformer that in-
tegrates the local modeling technique into the hierarchical
framework, even though without attention, the lower-bound
method can also achieve satisfactory accuracy.

Results are shown in Table 3. Our distance-based at-
tention outperforms the other two methods. In particu-
lar, self-attention achieves inferior accuracy compared to
the baseline where no attention is used. That is because
self-attention tries to find relevant elements in data (e.g.,
patches in images or words in texts) based on their seman-
tic relations. However, for proteins, there are only 21 types
of amino acids and there may be no strong semantic rela-
tions among amino acids. In this case, feature-based self-
attention may be unstable, thus leading to inferior accuracy.

Then, we investigate the impact of our distance-based
attention on efficiency. For running time, we conduct a
test experiment on protein fold classification with Intel(R)
Xeon(R) Silver 4214 CPU @ 2.20GHz and a single Nvidia
Quadro RTX A5000. Experiments are shown in Table 4.



Table 6. Comparison between regular and irregular 1D sequence
modeling on protein fold classification and enzyme catalytic reac-
tion classification (accuracy %).

Modeling
Fold Classification Enzyme

Fold Superfamily Family Reaction

Irregular 48.9 70.5 98.9 86.7
Regular 55.2 76.4 99.5 88.0

Compared to self-attention, our non-parametric distance-
based attention does not significantly increase the number
of parameters and running time.

4.5.2 Impact of 1D and 3D Structure Modeling

The structure of 3D point lists consists of a 1D list part and
a 3D geometry part. In this section, we investigate the in-
fluence of each of the two parts on modeling. As shown in
Table 5, spontaneously modeling the two structures signifi-
cantly outperforms the 1D-order or 3D-coordinate method.
Moreover, in the two 1D-order and 3D-coordinate methods,
3D-coordinate surpasses 1D-order by large margins. This
indicates that 3D geometry dominates the protein structure,
which is consistent with the consensus that it is mainly the
3D structure that determines proteins’ function.

4.5.3 Impact of Regular Modeling on 1D List Struc-
ture in Point Lists

To simultaneously model the 1D and 3D structures in point
lists, existing methods [4, 24, 29, 60] treat regular and dis-
crete sequential orders as irregular data and model them in
similar ways to 3D coordinates. Different from them, we
employ different linear transformations to reflect regular 1D
sequential orders and directly encode irregular 3D coordi-
nates for modeling geometry.

In this section, we compare our regular 1D modeling
method with an irregular approach. To this end, we first
concatenate 1D displacement and the relatively encoded 3D
displacement and then use the same linear transformation
to model them. As shown in Table 6, our regular 1D mod-
eling method effectively improves the accuracy, verifying
our motivation that regular and irregular data should be pro-
cessed in regular and irregular manners, respectively.

4.5.4 Impact of Relative Position Modeling

The vanilla Transformer directly integrates the embedding
of absolute positions of points into the input features, which
does not explicitly capture the relative structure of data.
However, most amino acids do not have a strong or obvious
relationship with their absolute positions. Instead, it is the
relative position, i.e., displacement, that determines their re-
lations. Therefore, we integrate the relative structure mod-
eling into the linear transformation for value generation. As

Table 7. Impact of relative position modeling on protein fold clas-
sification and enzyme catalytic reaction classification (accuracy
%).

Psition
Fold Classification Enzyme

Fold Superfamily Family Reaction

Absolute 31.1 48.7 94.8 82.7
Relative 55.2 76.4 99.5 88.0

Table 8. Impact of rotationally invariant displacement encoding
on protein fold classification and enzyme catalytic reaction classi-
fication (accuracy %).

Modeling
Fold Classification Enzyme

Fold Superfamily Family Reaction

Variant 44.9 60.1 95.1 87.2
Invariant 55.2 76.4 99.5 88.0

shown in Table 7, relative position modeling significantly
outperforms absolute structure modeling.

4.5.5 Impact of Rotationally Invariant Displacement
Encoding

Because there is no concept or definition of direction for
micro-particles, to be rotationally invariant is important for
modeling them. In this section, we investigate the impact
of invariant displacement encoding. As shown in Table 8,
rotationally invariant displacement encoding can effectively
improve the accuracy.

5. Conclusion

In this paper, we propose a Transformer-style PointList-
Net for 3D point list modeling. In our PointListNet, we re-
place self-attention with non-parametric distance-based at-
tention, and integrate relative structure modeling into Trans-
former and employ regular and irregular methods to cap-
ture the sequence and geometry structures, respectively. To
show the effectiveness of the proposed PointListNet for
3D point list modeling, we conduct experiments on pro-
tein fold classification and enzyme reaction classification
and achieve new state-of-the-art accuracy. 1
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