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Abstract

Profiting from the advance of deep convolutional net-
works, current state-of-the-art video action recognition
models have achieved remarkable progress. Neverthe-
less, most of existing models suffer from low interpretabil-
ity of the predicted actions. Inspired by the observation
that temporally-configured human-object interactions often
serve as a key indicator of many actions, this work crafts
an action reasoning framework that performs Markov Logic
Network (MLN) based probabilistic logical inference. Cru-
cially, we propose to encode an action by first-order logical
rules that correspond to the temporal changes of visual re-
lationships in videos. The main contributions of this work
are two-fold: 1) Different from existing black-box models,
the proposed model simultaneously implements the local-
ization of temporal boundaries and the recognition of ac-
tion categories by grounding the logical rules of MLN in
videos. The weight associated with each such rule further
provides an estimate of confidence. These collectively make
our model more explainable and robust. 2) Instead of us-
ing hand-crafted logical rules in conventional MLN, we de-
velop a data-driven instantiation of the MLN. In specific,
a hybrid learning scheme is proposed. It combines MLN’s
weight learning and reinforcement learning, using the for-
mer’s results as a self-critic for guiding the latter’s train-
ing. Additionally, by treating actions as logical predicates,
the proposed framework can also be integrated with deep
models for further performance boost. Comprehensive ex-
periments on two complex video action datasets (Charades
& CAD-120) clearly demonstrate the effectiveness and ex-
plainability of our proposed method.

1. Introduction
Action recognition is a fundamental task in video under-

standing and has garnered significant attention in the last
few years. Recently, in virtue of the drastic development
of deep learning, 3D convolutional networks (3D CNNs)
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Figure 1. An illustration example from Action Genome [22]. It
demonstrates that actions can usually be decomposed into evolv-
ing spatio-temporal scene graphs (i.e., how a person interacts
with surrounding objects over time such as person-lying-on-bed to
person-siting-on-bed). Inspired by this, we propose to use a data-
driven Markov Logic Network to model this evolving pattern.

have revolutionized this research field [4, 7, 8, 10, 23]. With
various elaborately-designed neural architectures and end-
to-end learning algorithms, it has emerged as a prominent
paradigm for video action recognition. Compared to early
works [21, 33, 55, 56] based on low-level features (e.g., tra-
jectories, key points), the powerful representation capability
of 3D CNNs enables them to better capture complex long-
range semantic dependencies across video frames.

Though extensively adopted in modern video action un-
derstanding tasks, these deep neural networks still suffer
from some inherent deficiencies. Typically, 3D CNNs are
fed a video clip and output a score that indicates the confi-
dence for each action category through multi-layer calcula-
tions. Such a black-box predicting mechanism does not ex-
plicitly provide compelling evidence regarding the actions,
such as when / where / why the action occurred. The lack of
interpretability also makes deep neural networks vulnerable
to adversarial attacks [16, 36], which limits its applications
in many real-world scenarios [2] with strict security require-
ments. Therefore, in recent years, an increasing research ef-
fort has been devoted to explainable deep learning [45, 62].
All afore-mentioned facts strongly spur us to pursue an ac-
tion reasoning framework with both accurate performance
and convincing interpretability.



Our motivation is also built upon some discovery from
cognitive science and neuroscience [43,49] that people usu-
ally represent visual events as a composition of prototypi-
cal atomic unit. The research in [22] reveals that a com-
plex action can be decomposed into spatio-temporal scene
graphs, which depict how a person interacts with surround-
ing objects over time. Take action “awakening in bed”
shown in Figure 1 as an example. To accomplish this ac-
tion, a person may be initially lying on the bed, then wake
up and sit on the bed. The procedure can be described
by the temporal evolution of the human-object relationship,
namely from ⟨person, lying on, bed⟩ to ⟨person, siting on,
bed⟩. This allows the model to explicitly recognize the oc-
currence of actions through detecting the transition of vi-
sual relationships, thereby its interpretability and robustness
can be significantly improved. To implement this idea, we
need to address two key challenges: automatically learn-
ing the temporally-evolving patterns from data instead of
using hand-crafted rules, and conducting high-confidence
inference under the noisy information in the real data that
contaminate the aforesaid learned patterns.

To address the aforementioned issues, a novel explain-
able action reasoning framework is introduced to recognize
actions in untrimmed videos. Specifically, we adopt first-
order logic [1] for encoding the semantic-level state change
of a complex action. At each logical rule, the visual rela-
tionships serve as atomic predicates. These rules contain
adequate information and can be generated by a recurrent
policy network from scratch. This procedure proceeds by
progressively adding the action-related relationship predi-
cates. Since these rules are generated in a data-driven fash-
ion rather than by domain experts, they are prone to errors.
To tackle this problem, we resort to Markov Logic Network
(MLN) [44], a statistical relational model that combines
first-order logic and probabilistic graphical models [30]. It
associates a weight to each logical rule to soundly handle
its uncertainty: the larger the weight, the more reliable the
rule is. Hence, assigning lower (even negative) weights to
noisy ones will alleviate their deficiency. Eventually, the
probability of occurrence for each action is determined via
conducting probabilistic logical reasoning on MLN.

The overall training scheme of our framework consists of
two stages: rule exploration and weight learning. The first
stage is accomplished by leveraging reinforcement learning.
As for the second stage, the weight belonging to each rule
can be updated via supervised learning (i.e., maximizing the
likelihood of actions in the videos). Notably, the evaluation
result from weight learning can be exploited as a critic cri-
terion for guiding the rule exploration. The technical con-
tributions of this work can be summarized as follows:

(1) Compared to the prevalent deep 3D convolutional
networks, the proposed framework enjoys remarkable inter-
pretability since the weighted logical rules can convey clear

evidence regarding specific action. Moreover, our frame-
work naturally supports simultaneously recognizing the cat-
egories of actions and localizing their temporal boundaries,
benefiting from the learned temporal-evolution patterns.

(2) The logical rules for encoding complex actions can
be automatically exploited from data via our proposed rule
exploration mechanism, which is superior to some earlier
approaches [3, 35, 54, 70] that relied on manually-designed
rules to perform action reasoning.

(3) Comprehensive experiments on two challenging
video benchmarks (Charades [47] and CAD-120 [31]) show
that our method obtained excellent performance. In ad-
dition, it can furthermore boost the accuracy when being
integrated with deep models. Surprisingly, our framework
are still capable of achieving outstanding performance only
leveraging limited number of training examples.

2. Related Work
Video action recognition. Human action understanding
and analysis has been an active research area over the past
decades. Thanks to the emergence of deep learning, espe-
cially for the engineering tailoring of convolutional neural
networks (CNNs) [32], significant development has been
made in action recognition. For example, two-stream ap-
proaches like [12, 48] read the RGB and optical flows as
input and process them separately in different branches of
networks, which surpasses previous works by a large mar-
gin. The prevalence of 3D-CNNs [4, 17, 52] makes them
become the mainstream paradigm in this area. A majority
of works [5, 9, 11] mainly focus on designing effective neu-
ral architectures to extract rich spatio-temporal information
from videos. One related work in [60] also adopts a graph-
ical structure to exploit the implicit relationships between
object region proposals in videos and perform reasoning on
it via Graph Convolutional Networks [29]. Unlike them, we
adopt the weighted logical formulae to explicitly encode the
visual relationships and leverage MLN to handle the uncer-
tainty, which contributes to remedying the low interpretabil-
ity of deep models.
Probabilistic logic reasoning. This research field [6, 13],
aims to integrate probabilistic reasoning with first-order
logic and machine learning. First-order logic rules can
systematically generalize the domain knowledge and thus
have been widely adopted for reasoning, such as expert sys-
tems [61]. Due to the hard constraint of logic, researchers
attempted to integrate it with probability, which led to
the development of approaches based on graphical mod-
els in recent years, including Bayesian logic programs [27],
Markov logic networks [44] and others. They have been uti-
lized for human activity recognition in early works [35,54].
For example, Liao et al. [34] performed probabilistic infer-
ence on an unrolled Markov network based on the informa-
tion about locations provided by GPS sensors. In [37], the
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Figure 2. The computational pipeline of our proposed approach. Given a specific action category, the rule policy network firstly auto-
matically generates related formulae based on a learned distribution, which are utilized to construct a Markov logic network. Then, we
apply a scene graph predictor to short video snippets produced by a sliding window for extracting spatio-temporal scene graphs. The final
probability of the action is obtained by performing probabilistic logic reasoning on these scene graphs.

authors incorporated the pre-defined knowledge (e.g., the
trajectories of players and objects) into the Markov logic
network and performed multi-agent event recognition.

Although these related works take advantage of rule-
based knowledge to recognize video events, their explain-
ability is still limited due to the inadequate representation
capacity of low-level features. In addition, the rules for en-
coding actions need elaborate labeling by domain experts.
Instead, our proposed method adopts high-order visual re-
lationship as the prototypical unit and automatically mines
rules from the video data, which enables to subtly capture
the semantic information of complex events without bur-
densome manual labor.
Scene graph generation. Scene graph [25] is a structural
representation for understanding visual content in static im-
ages, where each unique object defines a node, and the
relationship between two objects corresponds to an edge.
Owning to the potential of enhancing many down-stream vi-
sual reasoning tasks [24, 65], this task has attracted tremen-
dous attention from researchers. By harnessing the message
passing mechanism [63], recent methods [51,64,67] are ca-
pable of fully exploiting the global visual context and pre-
dicting satisfactory scene graphs. In this work, we apply it
to the video domain and generate a spatio-temporal scene
graph in video segments to represent the semantic informa-
tion of a complex action.

3. Preliminary: Markov Logic Network

Markov Logic Network (MLN) [44] is a statistical rela-
tional model that utilizes first-order logic to define poten-
tial functions in the Markov random field. In MLN, each

logic formula has an associated real-value weight, which
indicates its confidence score. Higher weight is favored for
accurate formula. Essentially, MLN softens the hard con-
straints of first-order logic, making states that violate some
of the formulae less probable but not impossible.

Formally, let F be a logic formulae set, ωi be the weight
with respect to formula fi ∈ F and C = {c1, c2, ..., c|C|}
be a finite set of constants. Then, MLN serves as a template
for constructing a Markov network MF,C , where each pos-
sible grounding of an atomic predicate in fi can be seen as
a binary node that takes value 1 if that grounded predicate is
true, and 0 otherwise. Each possible grounding of formula
fi is a potential function whose value is 1 if the ground for-
mula is true and 0 otherwise. Hence there is an edge be-
tween two nodes in MF,C if their grounded predicates ap-
pear simultaneously in one formula grounding. Given such
formulation, the probability distribution over a world x is
given as below:

P (X = x) =
1

Z
exp

(
F∑
i

ωini(x)

)
, (1)

where ni(x) is the number of true groundings of formula fi
in x, F is the size of formula set F , and Z is the normalizing
partition function given by

∑
x exp (

∑
i ωini(x)). See [44]

for more details.

4. The Proposed Approach
In this section, we present the technical details of our

methods. As previously mentioned, complex actions can
usually be decomposed into temporal transitions of human-



object interactions across video frames. Inspired by this ob-
servation, we develop an explainable reasoning framework
in accordance with the evolving pattern of visual relation-
ships such as ⟨person-lying on-bed⟩ to ⟨person-siting on-
bed⟩ for complex action recognition.

As illustrated in Figure 2, the proposed approach con-
sists of two main components. The first one is a rule policy
network that aims to generate a near-optimal formulae set
F , where each formula f ∈ F explicitly represents a spe-
cific transition pattern. The other one is an action reasoning
module that performs probabilistic logic reasoning for cal-
culating the probability of each action through a Markov
logic network [44], which is constructed according to the
generated F before. Next, we will expound the implemen-
tation details for each component and the corresponding
training algorithm for the overall framework.

4.1. Rule Policy Network

Unlike early works with hand-crafted logical formu-
lae [34, 37], we aim to automatically produce formulae tai-
lored to each interested action without relying on any hu-
man labor. In this work, we specify the evolving pattern
of human-object interaction pattern with the logic form:
R1 ∧ ...∧Rt ...∧RT , where R1:T denotes the relationship
predicates in different frame and T denotes the total num-
ber of these predicates. Then the formula f with respect to
a complex action a can be represented as:

T∧
t=1

Rt → A or
T∧

t=1

Rt ⇔ A, (2)

where A is the predicate form of action a. Given a specific
action predicate A, only the left part in f remains to be spec-
ified. Since

∧T
t=1 Rt in Eq. 2 only contains the conjunction

operation (∧), it can be further represented as a linear se-
quence lf = {Rt}Tt=1.

Relying on the above transformation, the generation of
f turns into a sequential decision process with the goal of
predicting the most suitable lf for each action. We model
this process using a policy network π, which is trained to
approximate the probability distribution π(f |a; θ) over all
possible formula f with respect to a. Here θ is the distribu-
tion parameter. Once θ is determined, we can accordingly
draw several samples from π(f |a; θ) to harvest the formu-
lae set F . To this end, π is fulfilled by a Gated Recurrent
Unit network which can be formulated as:

ht = GRU(xt, ht−1), (3)

where xt is the embedding feature for predicate Rt at
tth step, ht−1 denotes the hidden state maintained within
π that aggregates the information of all past predicates
{R1, ..., Rt−1}. At the initial step, input the feature vec-
tor x0 of action predicate A to π, then the probability for

generating each predicate Rt is computed by:

p(Rt|R1, ..., Rt−1, A) = softmax(Wpht), (4)

where Wp is the parameter to be learned from data. During
training, we can obtain a formula f by sampling a corre-
sponding sequence lf = {Rt}Tt=1 in terms of the distribu-
tion in Eq. 4. Hence, the probability of the formula f is:

p(f |A) =
∏

Rt∈lf

p(Rt|R1, ..., Rt−1, A). (5)

After training the policy network π, we leverage the
beam search strategy to sample k best sequences from
π(f |a; θ) for each action a as the learned formulae set F .

4.2. Probabilistic Action Reasoning

This section presents the detailed probabilistic reason-
ing procedure for action recognition. The reasoning mod-
ule mainly contains three steps (see Figure 2). Next, we will
describe them respectively in the following.

Snippet generation with sliding window. Given an
untrimmed video denoted by v, a sliding window mecha-
nism is first applied to v for generating several video snip-
pets. In view of the fact that different actions often exhibit
large variation in temporal duration, the kernel of our slid-
ing window is set to multiple sizes. Moreover, for a sliding
window with kernel size L, each snippet has L/2 frames
overlapped with its neighbours. The sampled snippet set,
denoted as U , serves as the temporal proposals for the un-
derlying actions within the video v.

Scene graph prediction. For each snippet u ∈ U , we
employ a pretrained scene graph predictor to exploit the
high-level visual information belonging to a video frame.
Specifically, the predictor extracts all the objects in a frame
and forecasts their visual relationships with the actor. The
generated scene graph can be denoted as G = (O,E). Here,
O = {o1, o2, ...} is the set of objects interacting with an ac-
tor p and E = {{e11, e12, ...}, {e21, e22, ...}} denotes the
relationships between them, where eij indicates the j-th re-
lationship between the actor p and i-th object oi. There may
exist multiple types of relationship between each actor and
object due to the diversity of visual interaction. Note that
each triplet rij = ⟨p, eij , oi⟩ can be treated as a grounding
of its corresponding relationship predicate on a video snip-
pet. Moreover, the confidence score srij of the grounding
rij is given by:

srij = sp · seij · soi , (6)

Here, sp, soi , seij are respectively the confidence scores for
the predicted actor p, object oi and their relationship eij ,
which are given by the scene graph predictor.



Considering that visual relationships among objects
barely change in a few consecutive frames, it would be re-
dundant if we generate scene graph for every single frame
in a snippet. Hence, only M frames are uniformly sampled
from a snippet u ∈ U to perform the above prediction.

Probability inference. Given a trained Markov network
M = {⟨fi, ωi⟩}Fi=1, the probability of each action a on
a video can be accordingly inferred. To this end, follow-
ing Eq. 1, the number of true grounding ni(x) on snippet u
with respect to formula fi requires to be determined. Note
that the logic formula in the MLN operates on binary pred-
icates, which can only take a value of 0 or 1. However, the
grounding of our relationship predicate takes a real value
specified in Eq. 6 with the range of [0, 1]. Such a property
makes it difficult to determine whether a formula grounding
is absolutely true.

To ensure compatibility with logical operations (e.g.,
∨,∧,¬ ) in first-order logic, we relax the the operations on
Boolean variables to functions defined on continuous vari-
ables using Łukasiewicz logic [14]. The relaxed conjunc-
tion (∧̃), disjunction (∨̃) and negation (¬̃) can be defined as:
X ∧̃ Y = max(0, X + Y − 1), X ∨̃ Y = min(1, X + Y )
and ¬̃X = 1 − X . With such a formulation, the ni(x) in
Eq. 1 can be effectively computed. Take the formula on the
left part of Eq. 2 as an example. According to the transform
criterion in first-order logic, such a formula can be firstly
converted into a Horn Clause [19]:

T∧
t=1

Rt → A ⇔
T∧

t=1

¬Rt ∨A, (7)

which are the disjunctions of positive or negated literals.
Then, based on the predicted scene graph on u, the value of
each grounding fi(x) is:

fi(x) = min

(
T∑

t=1

(1− srt) + xa, 1

)
, (8)

where srt is the confidence score obtained by Eq. 6. xa is a
binary variable with a value of 0 or 1 that indicates whether
an action a occurs. ni(x) is thus obtained by adding up the
value fi(x) of all groundings. After that, the probability of
action a on a video snippet is given by:

P (a = xa|MBx(a)) =

exp
(∑Fa

i ωini(x[a=xa])
)

exp
(∑Fa

i=1 ωini(x[a=0])
)
+ exp

(∑Fa

i=1 ωini(x[a=1])
) ,

(9)
where Fa is the number of formulae related to a, MBx(a)
indicates the Markov blanket of a, which are the triplets
that appear together with a among all formulae. The final
results of the whole video v are obtained by performing a
max-pooling on its snippet set U .

4.3. Hybrid Training Algorithm

Our goal is to learn the most suitable Markov network
M = {⟨fi, ωi⟩}Fi=1 from the training data. For this pur-
pose, the training scheme consists of two main stages: rule
exploration and weight learning. Due to the discrete na-
ture, one cannot directly learn the policy network π through
back-propagation based on the end-task loss. Thus we pro-
pose to use a hybrid learning strategy in which the rule ex-
ploration stage is optimized by the policy gradient method
in reinforcement learning, and the weights of generated
rules are optimized via supervised learning.

Suppose we obtain a formula f by sampling from
π(f |a; θ), then we can train the rule policy network via
maximizing the expected reward:

J(θ) = Ef∽π(f |a;θ)
[
H(f)

]
. (10)

Here H(f) is the recognition performance evaluation met-
ric such as mAP. Then, the gradient ∇θJ will be formulated
as: Ef∽π(f |a;θ) [H(f)∇θ log π(f |a; θ)], which can be esti-
mated by Monte-Carlo sampling:

∇θJ ≈ 1

K

K∑
1

(
H(fk)∇θ log π(fk|a; θ)

)
, (11)

where K is the sampling times. Inspired by [42], we intro-
duce a baseline b, which is the exponential moving average
of recent H(fk). The original reward in Eq. 11 is then re-
placed by H(fk)− b. Moreover, to encourage the diversity
of rule exploration, we also add an entropy regularization
over π(f |a; θ) to the final loss.

The weight learning stage aims to learn the appropriate
weight for the generated formula, which is fulfilled by max-
imizing the log-likelihood:

L(f) =
N∑
i=1

log (Pi(a = xa|MBx(a))) , (12)

where N is the size of a batch of videos, xa is 1 if the action
a exists in the i-th video vi and 0 otherwise.

The overall training procedure will be alternatively exe-
cuted between rule exploration and weight learning. Firstly,
we perform weight training for the formula set F generated
via the initialized rule policy network π, and then fix the
weight to update the parameter of π based on the gradient
estimated by Eq. 11. After that, we perform weight training
for a fresh F generated by updated π. These two stages will
be performed alternatively for several times.

4.4. Integration with Deep Model

An untrimmed video usually involves multiple actions,
among which some underlying relations may exist. Take
a video instance in Charades [47] as an example, there are



some reasonable connections among the actions holding a
broom, putting a broom somewhere and tidying something
on the floor: when a person is tidying something on the
floor, he may be holding a broom and then put the broom
back after the tidying. Therefore, our proposed framework
can be incorporated as an inference layer after the output
of deep models to enhance the prediction for hard-to-detect
actions (e.g., tidying something on the floor), based on easy-
to-detect actions (e.g., holding a broom). Specially, our
framework can be leveraged to learn some logical formulae
and the corresponding weights to represent the connections
among actions. During inference, given the output confi-
dence scores from a deep model, we consider the actions
with high confidence as the observed evidence and perform
probabilistic reasoning for other actions.

5. Experiment
5.1. Datasets and Metrics

Datasets. Two large-scale video datasets are utilized in
the whole experiments. (1) Charades [47]. It is a large
dataset composed of about 9.8k untrimmed videos, among
which 7,985 are used for training and 1,863 for testing.
These videos contain 157 complex daily activities about 267
people’s 15 types of indoor scenes. On average, each video
contains 6.8 distinct action categories, often with multiple
ones in the same frame, which makes the recognition ex-
tremely challenging. To train the scene graph predictor, we
leverage the Action Genome [22], which provides frame-
level relation annotations for videos in Charades. Overall,
it includes 1.7M instances of 25 relationship classes. (2)
CAD-120 [31]. This is an RGB-D dataset focusing on the
human activity of daily life. It consists of 551 video clips
with 32,327 frames about 10 different high-level activities
(such as having meal, arranging objects). Here, we adopt
a re-annnotated version provided by [70], which includes
detailed relationships and attributes for the video frames.

Evaluation protocol. For Charades, our goal is to rec-
ognize multiple complex actions in an untrimmed video.
Due to the multi-label property, we calculate the Mean Av-
erage Precision (mAP) to evaluate the performance on all
categories. While for CAD-120, the Mean Average Recall
(mAR) metric is adopted as in [70] to measure whether the
model successfully recognizes the performed actions.

5.2. Implementation Details

We firstly train a scene graph detector to generate the
scene graph for video frames. To fulfill this, a Faster
RCNN [41] detector with ResNet-101 [18] backbone is ap-
plied to extract a 2,048-dimensional RoI (region-of-interest)
feature for each detected objects. Then, we employ Mo-
tifs [50, 66] to perform relation prediction, which is trained
on Action Genome by following the train / validation splits

Table 1. Experimental results of different methods for action
recognition on Charades benchmark. Models are grouped accord-
ing to the modality and the types of pre-trained backbones.

Methods Modality Pre-train mAP(%)
Two-stream [48] RGB + Flow ImgaeNet 18.6

ActionVLAD [15] RGB + IDT ImageNet 21.0
TRN [68] RGB ImgaeNet 25.2
I3D [4] RGB Kinetics-400 32.9

Timeception [20] RGB Kinetics-400 37.2
3D R-101 + NL [59] RGB Kinetics-400 37.5

GHRM [69] RGB Kinetics-400 38.3
SlowFast [10] RGB Kinetics-400 42.1

X3D [8] RGB Kinetics-400 43.4
SlowFast-R50 [10] RGB Kinetics-400 38.9

Ours + SlowFast-R50 RGB Kinetics-400 40.1
Ours RGB ImageNet 38.4

Ours (Oracle) RGB ImageNet 62.8

as Charades. For the rule policy network, we utilize a gated
recurrent unit (GRU) with 512 hidden units and project the
logic predicate to a 200-dimensional vector by simply aver-
aging its word embedding [38].

Before the hybrid training, we perform a warm-up pre-
training for the policy network. It can be done by randomly
sampling some relationship transition sequences from the
training data and leveraging them as supervision to guide
our rule policy. Through this procedure, it learned a suit-
able parameter initialization which serves as a frequency-
related prior and enables our hybrid training to converge
faster. The pre-training proceeds three epochs with a learn-
ing rate lr = 0.001 and uses a cross-entropy loss. After
that, we conduct our hybrid training to update the policy
network. In detail, we optimize it using an Adam opti-
mizer [28] with β1 = 0.9, β2 = 0.999, lr = 0.0005 and
set K = 5 in Eq. 11. The weight learning is fulfilled via
maximizing the log-likelihood in mini-batch data, where the
batch size is set to 256.

5.3. Main Results

To fully demonstrate the superiority of our proposed
model, we design two key experimental settings on afore-
mentioned video datasets, including action recognition and
action temporal localization.

5.3.1 Complex action Recognition
This task requires the model to predict a video-level action
labels as the final recognition results. We adopt the ResNet-
101 [18] as the backbone for our scene graph predictor and
compare with several recent competitive methods (note that
the mAP scores using K400-pretrained backbone are sup-
posedly over-rated since the action categories in Kinectics
and Charades are partially overlapped). Table 1 summa-
rizes the results on Charades. It can be seen that our model
achieves 38.4% mAP and surpasses the powerful 3D CNN



models, which demonstrate that our model can fully exploit
temporal information via the generated formula and their
MLN weight, on the basis of just utilizing 2D scene graph
on individual video frames (rather than more informative
short snippets as in I3D). Benifiting from the pre-training
on large video benchmark Kinetics [26], the state-of-the-art
3D models (e.g., X3D) achieves higher performance than
our model, but our method exceeds deep models only pre-
trained on ImageNet (38.4 % v.s. 21.0 % in [15]). Due to
the limitations of scene graph predictor, we follow [22] and
design an Oracle version of our method, which leverages
the ground-truth of relationships on a frame. As presented
in the bottom line of Table 1, our Oracle version achieves
a significant improvement (∼24%) on mAP performance
and outstrips all the deep models by a large margin, which
demonstrates the powerful potential of our method. We also
evaluate the model integration (Section 4.4) with SlowFast
(R-50). By exploiting the relation between different actions,
our model can further boost the performance of deep mod-
els (1.3% higher mAP in Table 1).

For CAD-120 dataset, we follow the same setting as
in [70] to divide the long video sequences into small clips,
each of which only contains one action, and evaluate the Av-
erage Recall metric for each action. As shown in Table 2,
our model achieves the best results in terms of mAR. Al-
though [70] also adopted an explainable framework, they
performed action reasoning just by observing specific state
transitions between two consecutive frames defined by do-
main expert. Our model leverages MLN learned from real
data, which is more general and excellent (0.83 v.s. 0.80).

5.3.2 Action Temporal localization

Our model recognizes complex actions by relying on ex-
plainable formula, and thus provides convincing evidence
that shows the reason to make such prediction. Therefore,
by knowing the timestamp where these evidence appears,
one can localize the temporal boundary of the action. It
is fulfilled by firstly leveraging the sliding window mech-
anism described before to generate several video snippets
from the whole video. Then we perform action reasoning
on each snippet and choose the one with highest probability
as the temporal location of the corresponding action.

We compare with several advanced deep models on the
Charades. It can be seen in Table 3 that our model achieves
a prominent action localization results. Compared with
models [46, 57] that also are pre-trained only on ImageNet,
we have the best performance (20.9% mAP v.s. 14.2% mAP
by [57]). In addition, we still achieve a comparable re-
sults with ones pre-trained on Kinetics (e.g., [39]). Despite
slightly weaker than [10] in mAP performance, our localiza-
tion prediction is more explainable. Since no ground truth
is provided in CAD-120, we did not report results on it.

Table 2. Experimental results on CAD-120 for the task of action
recognition.

Methods Modality mAR

Temporal Segment [58, 70]
RGB 0.42
Flow 0.71

RGB + Flow 0.77
Explainable AAR-RAR [70] RGB 0.80

Ours RGB 0.83

Table 3. Experimental results of video temporal action localization
on the Charades benchmark.

Methods Modality Pre-train mAP(%)
ATF [46] RGB ImageNet 12.9

SVMP(VGG) [57] RGB+IDT ImageNet 14.2
I3D [4] RGB K-400 15.6

Two-stream I3D [4] RGB + Flow K-400 17.2
3D ResNet-50 [53] RGB K-400 18.6

X3D [8] RGB K-400 18.9
I3D + SP [40] RGB + Flow K-400 19.4

X3D-L [8] RGB K-400 20.0
I3D + TGM [39] RGB + Flow K-400 21.5

SlowFastdet (X3D) [10] RGB K-400 22.3
Ours RGB ImageNet 20.9

5.4. Ablation Studies

Module combinations. To explore the effect of our
rule policy network (RPN) and the weight learning (WL)
in probabilistic action reasoning module, we conduct some
related ablation studies. To be specific, we propose three
adjustments, 1) replacing the rule policy network with a
frequency-induced baseline that generate the formula ac-
cording to the co-occurrence frequency of relationships in
training set. 2) leveraging the formula produced by our rule
policy network and directly adopt the probability in Eq. 5
as the final weight for MLN reasoning. 3) directly using
the formula generated from the frequency-induced base-
line and treating the frequency value as the weight without
additional learning. The quantitative results are shown in
Table 4. One can observe that cancelling any of our two
key modules will weaken the recognition performance. Be-
sides, the rule policy network contributes more to the whole
performance compared with weight learning (5.3% mAP
decrease v.s. 8.6% mAP decrease on Charades), which
demonstrates the effectiveness of exploiting suitable formu-
lae from real video data.

Different amounts of training data. Intuitively, the
human-object interaction pattern belongs to the same action
should be similar among different videos. Therefore, one
can learn this specific pattern via just several examples. To
validate this assumption, we conduct an experiment on Cha-
rades to explore the recognition performance under differ-
ent numbers of training examples. To be specific, we train
our model with only k positive examples of each action cat-
egory. The results are reported in Table 5. As expected, our



Action: Tidying something on the floor

holding broom -> standing on floor -> looking at floor

looking at towel -> looking at broom -> unsure floor

1.78 - 0.29

0.99standing on floor-> in front of vacuum -> holding vacuum
sitting on chair -> standing on floor -> looking at floor

- 0.64

Action: Working/Playing on a laptop

touching laptop -> in front of laptop -> touching laptop

looking at laptop -> touching laptop -> sitting on chair

2.71

1.52 sitting on bed -> holding phone -> in front of laptop

- 0.14holding food -> sitting on chair -> in front of laptop

- 0.73

Figure 3. Some examples of the learned formula and corresponding weights by the proposed hybrid training algorithm. Each formula can
be drawn from π(f |a; θ) with the corresponding weight. We highlight positively-supporting formula in green, otherwise in yellow.

framework still achieves a competitive recognition perfor-
mance. Especially for the Oracle version, it shows a 53.8%
mAP with only 10 examples, which further demonstrate that
our model has large potential of capturing the relationship
dynamics involved in a specific action.

Table 4. Ablation study on the Charades and CAD-120 bench-
marks. ✓ implies that specific component is included in the ex-
periments. RPN is Rule Policy Network, WL is weight learning.

RPN WL mAP on Charades (%) mAR on CAD-120
26.2 0.76

✓ 33.1 0.77
✓ 29.8 0.81

✓ ✓ 38.4 0.83

Table 5. Ablation of different number of examples in video action
recognition task for Charades benchmark.

Methods 1-example 5-example 10-example
Ours 15.3 22.8 30.6

Ours (Oracle) 31.6 47.5 53.8

5.5. Visualization and User Study

To demonstrate the explainability and diversity of the
generated rules, we illustrate a few examples of the learned
formula and weight in Figure 3. It can be observed that the
formulae with higher weights often provide better reasoning
for the interested actions. For instance, the consequences of
observations holding broom → standing on floor → looking
at floor provide a clear sign of the action tidying something
on the floor. In addition, we also conduct a user study re-
garding the explainability. The range of formula weight is
uniformly trisected, where the rules are accordingly denoted
as good, neutral and bad ones. For a subset of 20 actions on

A (good)

C (bad)

B (neutral)

A

A

A

B C

B C

B C

{0: {0: 0.7875, 1: 0.155, 2: 0.0575}, 
1: {0: 0.155, 1: 0.4575, 2: 0.3875}, 
2: {0: 0.0575, 1: 0.3875, 2: 0.555}}

Figure 4. Statistics of user study regarding the explainability (i.e.,
being human-friendly) of the learned formulae. The candidates
are categories as good, neutral or bad according to their weights.
Each row depicts the confusion with other categories aggregated
from all sampled rules.

Charades, we randomly sample 1 formula from each type.
21 subjects are solicited for ranking the shuffled formulae
according to the relevance to the action. The statistics are
shown in Figure 4. As observed, the results show high con-
sistency between the learned weight and human common-
sense (e.g., 78.75% good rules are still marked as good).

6. Concluding Remarks
We propose an explainable action reasoning framework

for complex video action recognition. Inspired by the fact
that complex actions can be decomposed into prototypical
atomic unit like scene graph, we perform the probabilistic
logical inference based on Markov Logic Network (MLN).
The formulae used for reasoning are all learned automat-
ically from the data. Different from existing approaches
based on black-box deep convolutional networks, our model
is capable of explaining when / where / why an action oc-
curs in the video. Extensive experiments and visualization
both confirm the effectiveness and interpretability.
Acknowledgement: This work is supported by National Key
R&D Program of China (2018AAA0100702) and Beijing Natu-
ral Science Foundation (Z190001).
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