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Abstract

Egocentric video recognition is a challenging task that
requires to identify both the actor’s motion and the active
object that the actor interacts with. Recognizing the ac-
tive object is particularly hard due to the cluttered back-
ground with distracting objects, the frequent field of view
changes, severe occlusion, etc. To improve the active ob-
ject classification, most existing methods use object detec-
tors or human gaze information, which are computation-
ally expensive or require labor-intensive annotations. To
avoid these additional costs, we propose an end-to-end
Interactive Prototype Learning (IPL) framework to learn
better active object representations by leveraging the mo-
tion cues from the actor. First, we introduce a set of verb
prototypes to disentangle active object features from dis-
tracting object features. Each prototype corresponds to
a primary motion pattern of an egocentric action, offer-
ing a distinctive supervision signal for active object fea-
ture learning. Second, we design two interactive oper-
ations to enable the extraction of active object features,
i.e., noun-to-verb assignment and verb-to-noun selection.
These operations are parameter-efficient and can learn ju-
dicious location-aware features on top of 3D CNN back-
bones. We demonstrate that the IPL framework can gen-
eralize to different backbones and outperform the state-of-
the-art on three large-scale egocentric video datasets, i.e.,
EPIC-KITCHENS-55, EPIC-KITCHENS-100 and EGTEA.

1. Introduction

Egocentric videos have become popular on social me-
dia and have attracted increasingly more attention in com-
puter vision since the introduction of datasets, such as
EGTEA [21], Charades-Ego [32], EPIC-KITCHENS [6, 5,

]. Unlike third-person videos where actions usually hap-
pen at a distance, egocentric videos focus on person and ob-
ject interactions at a closer look. Understanding egocentric
videos requires to identify both the motion from the actor
and the object that the actor interacts with. Recent egocen-
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Figure 1. The motivation of Interactive Prototype Learning (IPL)
framework. The noun classification is difficult as the active ob-
ject can be surrounded by a considerable number of distracting
objects. Our framework aims to collaboratively learn judicious
motion-relevant spatio-temporal features for more accurate noun
(active object) classification.

tric video datasets [5, 7] are usually constructed by decom-
posing an action into a combination of a verb and a noun,
where action recognition can be achieved by classifying the
associated verb and noun. For instance, “cut potato” is di-
vided into a verb “cut” and a noun “potato”. Such a formu-
lation helps to distinguish the subtle semantic differences
among actions.

Egocentric videos focus on domain-specific fine-grained
actions, while the existing third-person datasets [18] are
more generic and collected from various domains, like
sports and daily activities. In egocentric videos, the back-
ground scene is often similar among different actions. For
instance, “cutting carrot” and “peeling potato” can both
happen in the same kitchen scene. Hence, the usefulness of
scene context information is limited in egocentric videos,
making the recognition task more challenging.

Besides the aforementioned challenges, noun classifica-
tion is particularly difficult as the active object [9, 11] in-
volved in the action can be surrounded by a considerable
number of distracting objects, e.g., the bowls and pans sur-
rounding the active object “potato” in Fig. 1. Indeed, noun



classification tends to have much lower accuracy than verb
in egocentric video datatsets [0, 40], and is the bottleneck
of the whole action recognition system.

Previous methods either use off-the-shelf object detec-
tors [40, 42] or human gaze provided by the datasets [21]
as additional cues to improve noun recognition. However,
running object detectors on high-resolution video frames is
computationally expensive, and human annotations are not
always available. In this paper, we propose to improve
active object recognition in egocentric videos by leveraging
the information learned from the actor’s motion. The active
objects often locate in areas where the actors perform the
action. Moreover, the actor’s motion carries the intent of
the actor and is often the dominant signal in the egocentric
videos, which can serve as a reliable supervision to improve
active object recognition.

We devise an end-to-end Interactive Prototype Learning
(IPL) framework for joint verb and noun classification
(Fig. 1). IPL learns verb prototypes using the supervi-
sion from verb labels, and each verb prototype encodes the
motion pattern of a verb class. The learned verb proto-
types are used to guide noun classification through disentan-
gling active object features from distracting object features.
This is achieved by two interactive operations, i.e., noun-
to-verb assignment and verb-to-noun selection. The two
operations collaboratively extract judicious location-aware
spatio-temporal features for noun classification. The noun-
to-verb assignment aims to aggregate the features based on
their similarities to the verb prototypes. In the verb-to-noun
selection, we choose the most action-relevant features for
the noun classification.

Some components of IPL share the same spirit as
NetVLAD [1], but there are a few key differences. First,
our prototypes are learned with direct supervision from verb
annotations. Each prototype corresponds to each verb class,
whereas the semantic meaning of the NetVLAD clusters
is unclear. Second, our prototypes are shared by verb and
noun classification in a multi-task setting, where the harder
task (i.e., noun classification) can benefit from the infor-
mation learned from verb classification. Third, instead of
concatenating the features from all clusters like NetVLAD,
we propose a verb-to-noun selection mechanism to identify
discriminative features from active objects.

With extensive experiments and detailed ablation stud-
ies, we demonstrate that IPL outperforms the state of the art
on three large-scale egocentric video dataset, and is able to
generalize to different video backbones [3, 38]. To summa-
rize, we made the following major contributions:

* Propose to leverage the information learned from rec-
ognizing the actor’s motion to improve active object
classification, which is currently the bottleneck of ego-
centric video recognition.

* Design the IPL framework which allows better infor-
mation flow between the verb and noun classification
task by sharing the same set of feature prototypes.

e IPL shows superior results on three egocentric
datasets, i.e., EPIC-KITCHENS-100 [7], EPIC-
KITCHENS-55 [6] and EGTEA [21], without the ad-
ditional cost of object detection and human gaze anno-
tations.

2. Related Work

Video Architectures. Early architectures [33, 8, 39] for
video classification are usually based on 2D convolution
adopted from the image domain. 2D convolutions are
still widely used for efficient video recognition, such as
TRN [46], TSM [24], ECO [47], etc. On the other hand,
3D convolutions [37] have gained popularity due to their
spatio-temporal modeling capacity. I3D [3] initializes 3D
CNNs with inflated weights from 2D CNNs pretrained on
ImageNet [20]. S3D [44], R(2+1)D [38] and P3D [28] pro-
pose to decompose 3D convolutions to 2D spatial convolu-
tions and 1D temporal convolutions. SlowFast [10] is an-
other recent example of video architectures. These popular
video backbones are designed for general video classifica-
tion tasks and do not take into account the challenges of
egocentric videos. Though IPL is built on existing video
backbones, we focus on designing a framework that can im-
prove the accuracy of recognizing active objects in egocen-
tric videos.

Action Recognition in Egocentric Videos. A number of
existing methods leveraged object detection to improve ego-
centric video recognition [40, 41, 42, 30, 26], among which
[42, 30] also incorporate temporal contexts to help under-
standing of the ongoing action. These methods require
labor-intensive object detection annotations and are com-
putationally expensive, which may limit their applications
in real-world systems. In contrast, our framework only uses
the existing action labels as supervision and does not de-
pend on costly object detectors. Recently, Shan et al. [31]
developed a hand-object detector to locate the active ob-
ject. When the detector is well-trained, it can be directly
deployed on the target dataset without finetuning. However,
running the detector on high resolution frames is still much
more expensive than our method.

Sudhakara et al. [35] proposed a two-stage Long-Short
Term Attention RNN model to track discriminative areas
and locate active objects. Li ef al. [21] and Liu et al. [25]
leveraged the gaze annotations to guide deep models to fo-
cus on the interacting area and select informative features.
TBN [19] fuse multi-modal information (such as optical
flow and audio) to improve egocentric action recognition.
Compared to these methods, IPL leverages the motion cues



learned from verb classification to select discriminative fea-
tures for active object recognition.

Feature Aggregation. Our method is also related to the
feature aggregation method such as VLAD [17] and Fisher
Vectors [29]. NetVLAD [1] converts VLAD into an differ-
entiable layer for end-to-end training. These feature aggre-
gation methods have been applied to video recognition and
achieved promising results [45, 14, 27]. Besides feature ag-
gregation, IPL is also designed to learn prototypes shared
between the verb and noun classification, and prototypes
are trained with direct supervision from verb labels. This
enables our prototypes to encode the motion feature of each
verb class and provide information to select discriminative
features to improve noun classification.

3. Interactive Prototype Learning
3.1. Overview

Given an input video clip X, the goal is to classify it
into M verb classes and N noun classes. The underlying
action can be inferred from the verb and noun prediction
results. As shown in Figure 2, we first extract the spatio-
temporal feature map ¢g(X) € RT*HXWXC from the last
convolutional layer of the 3D CNN backbone ¢y, where 6
is the parameters of the CNN, 7" is the temporal length, C'is
the number of channels and H x W is the spatial resolution.

The core idea of IPL is to utilize verb features to guide
the learning of action-centric object features. Specifically,
we introduce M verb prototypes P = {p1,pa,...,Pm} €
RMX*C " where each prototype corresponds to a verb class
and represents one type of motion from the actor. All M
prototypes are shared between the verb and noun branches
in order to enable interactive learning.

In the verb branch, we obtain the C'-dimensional verb
feature vector by applying global average pooling on
¢¢(X) (Section 3.2). Unlike the conventional linear classi-
fier implemented by a fully connected layer, we use a simple
nearest neighbor classifier with a cosine similarity [13] be-
tween the verb feature and M verb prototypes. This simple
strategy allows us to directly enforce the strong supervision
from the verb ground-truth to learn more semantic verb pro-
totypes.

In noun classification, we design two interactive opera-
tors to extract location-aware features from ¢¢(X) to per-
form the noun classification. In the noun-to-verb assign-
ment operator (Section 3.3.1), we decompose ¢g(X) into
THW (C-dimensional features, and assign each feature to
M verb prototypes and one additional background proto-
type to catch irrelevant background information. This con-
verts the T"HW features into M + 1 feature groups. In the
verb-to-noun selection operator (Section 3.3.2), we select
K feature groups corresponding to the top-K verb classes

with the highest classification score from the verb branch.
The selected K features are then aggregated to obtain the
final representation for noun classification.

3.2. Verb Classification

Verb Prototype. In egocentric videos, motion is the dom-
inant information for action recognition and indicates the
intention of the actor and which object the actor wants to
interact with [6, 7]. This motivates us to leverage the ac-
tor motion information to improve active object recognition,
which is an arguably harder task. Specifically, we propose
to learn a prototype for each verb class. We denote the verb
prototypes as P = {p1,pa,...,pn }, where P € RM*C,
These verb prototypes are intermediate representations to
facilitate interaction between the verb and noun classifica-
tion. They are anchors for grouping spatio-temporal fea-
tures based on their similarities.

Cosine Classifier. Inspired by recent works [4, 13], We
design a simple and effective classifier: Nearest-Neighbors
(NN) on top of £5-normalized features, and named as cosine
classifier. Given the spatio-temporal feature map ¢y (X),
the verb feature is generated with global average pooling
(GAP):

v = GAP(¢y(X)), (1)

where v € R After that, we calculate the cosine simi-
larity between the verb feature and each verb prototype. The
verb classification probability g; for the i-th class is gener-
ated using a softmax activation function. Formally,

exp(vop;' /T)
M - )
Zj:l exp(vp;T/T)

where v = H%\I and p; = H%H are the [>-normalized vec-
tors. Here we use a temperature 7 to re-scale the similari-
ties following [13, 4]. The temperature 7 can help training
similarity-based classifier and reduce intra-class variations
[4], which is beneficial for learning discriminative video
representations.

2

q; =

3.3. Noun Classification
3.3.1 Feature Assignment and Grouping

In egocentric videos, the motion from the actor gives strong
indications about what object the actor interacts with. This
inspires us to leverage the motion features to identify the
features from the active objects and suppress the features
from distracting objects. We design new operators that can
decompose and regroup object features based on their rel-
evance to the actor motion and learn more discriminative
features for active object classification.
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Figure 2. Our Interactive Prototype Learning (IPL) framework. The feature map of size T' x H x W x C' is extracted from the last
convolutional layer of the 3D CNN backbone. To facilitate the interaction between the verb branch and the noun branch, we introduce a set
of verb prototypes shared across the two branches. A background prototype is introduced to filter the action-irrelevant information from
the spatio-temporal feature map. Each prototype is a C-dimensional vector and is randomly initialized during training. Verb prediction
is obtained by computing the cosine similarity between the average pooled verb feature and the verb prototypes. For noun prediction, the
feature map is decomposed and grouped by soft-assigning each feature to the prototypes. We select the most relevant /' groups based on
verb predictions to generate the final noun representation. The 3D CNN backbone and IPL are jointly trained in an end-to-end manner.

Feature Assignment. We propose to assign the THW
C-dimensional features to the learned prototypes. Besides
the aforementioned M verb prototypes, we also introduce
a background prototype b € R'*¢ to catch all the irrele-
vant features that do not match to any of the motion pat-
terns from the M verb classes. In total we have M + 1
prototypes, noted as P’ = {pi,po,...,pn,b}, where
P’ ¢ RM+DXC andeach e; € R C forj=1... M +1.
By assigning T HW features to M + 1 prototypes, we can
disentangle the features of the active object from the fea-
tures of the distracting objects, and select relevant features
for noun classification.

We use a simple dot-product operator between the fea-
ture vector and the learned prototypes to measure their sim-
ilarity. A softmax function is applied to the dot product to
achieve the soft assignment of the feature to the M + 1 pro-
totype. For convenience, we reshape the spatio-temporal
feature map ¢g(X) € RT*HXWXC 15 2 2D tensor Z €
RB*C where B = T x H x W. For a feature vector z;
from Z, the assignment to the prototype c; is defined as,

exp(zicJT)

ai,j = M1 )
Sicy eap(zic])

3)

where a; ; is an element from the soft assignment matrix
A’ € REX(M+1) - We discard the assignments belong to
the background prototype b from A’ as they are considered
irrelevant for active object recognition. We end up with a
new assignment matrix A € RZ*M_ Though the assign-

ments to the background prototype b is removed from A,
all M + 1 prototypes are coupled together in the denomina-
tor of Eq. 3. Thus the background prototype b is learned in
the same way as p; via back propagation.

Feature Grouping. We aggregate all the assigned fea-
tures on each prototype to obtain M feature groups. The
aggregation operation can be performed by a matrix multi-
plication as follows,

G=A"Z, “4)

where G € RM*Y denotes the feature groups on the M
prototypes. g; € R is the i-th row of G, and represents
the aggregated feature belongs to prototype p;. g; includes
all the information from both the actor motion and the ac-
tive object. To obtain the feature of the active object, we
compute a residual between the grouped feature g; and the
verb prototype:

B
97" = gi — Y ak.iPi, )
k=1

where ay, ; is the element in A € RB*M  The normaliza-
tion on p; is for calibration so that it is on the same scale as
gi. g;'°“" is the final noun feature w.r.t. prototype p;.



3.3.2 Group Selection and Noun Classification

After feature assignment and grouping, we obtain a set of
features G"°“" = {g"°%", g7°"", ..., g}?""} correspond-
ing to M verb prototypes. Given a trimmed video clip, we
want to identify the features that are most related to the mo-
tion of the actor, and suppress the features that may come

from irrelevant background or distracting objects.

Towards this end, we propose to simply select top- K fea-
tures from {g7°"", g5°u", ..., g™} based on their verb
classification scores. We sort M verb predictions in de-
creasing order. We denote the indices of the top-K classes
with the highest scores as {i1,42,...,ix }. Then the top-K

noun noun

selected features are {g}'*"", g;'>"", ..., g;o"" }.

We apply l>-normalization to each selected feature and
concatenate them to generate the feature n’ € REXXC. We
then use a layer f,, parameterized by w to enhance feature
n’, which also reduces its dimension from K x C' to C. We
obtain the final noun representation n = f,,(n’), which can
be directly used for classification. Similar to verb classifi-
cation, we simply use a cosine classifier for noun classifica-
tion to reduce intra-class variations. In our implementation,
we instantiate f,, with an 1D convolutional layer with batch
normalization [ 6] followed by ReL.U activation. Note that
the number of additional parameters introduced by f, is
negligible.

Relations to NetVLAD. The implementation of IPL
shares similar components with the NetVLAD layer [, 14,

], if we consider the verb prototypes as the NetVLAD
clusters.  Unlike our verb prototypes, the clusters in
NetVLAD are not trained with direct supervision from a
classification loss. The semantic meaning of the NetVLAD
clusters is unclear, as they only serve as anchors in the fea-
ture space for clustering. In contrast, our verb prototypes
are directly optimized with a loss for verb classification.
Each verb prototype can be considered as a representation
to capture the motion feature of a verb class. Benefit from
this design, our learned prototypes can be directly used for
verb classification with a simple nearest neighbor classifier.
Note that the verb prototypes are also used to assign fea-
tures for noun classification and play the role of bridging
the two tasks (i.e., verb and noun classification) for egocen-
tric video recognition. Additional supervision from noun
classification further enhances the semantic meaning of the
learned prototypes. Instead of concatenating the features
from all the clusters in NetVLAD, we only select top-K
aggregated features as we aim to disentangle the features
from the active object and the features from the distracting
objects.

3.4. Training and Inference

During training, we use cross-entropy loss for classifica-
tion. The overall training objective is to minimize the sum
of the verb classification loss and the noun classification
loss. The 3D CNN backbone and the Interactive Prototypi-
cal Network are jointly optimized in an end-to-end manner.
During inference, given an input video clip, the framework
produces verb and noun predictions simultaneously. The ac-
tion predictions are generated by combining verb and noun
predictions.

4. Experiment
4.1. Dataset

EPIC-KITCHENS-55 [6] is a large-scale first-person
video dataset. It consists of 55 hours of recordings cap-
turing all daily activities in the kitchens. It contains 39,594
action segments which are annotated with 125 verb classes
and 321 noun classes. We split the original training set to a
new training and validation set following [2]. We report the
top-1 accuracy on the validation set.
EPIC-KITCHENS-100 [7] is recently introduced. Com-
pared to EPIC-KITCHENS-55 [6], the annotations are
denser and more accurate. It consists of 100-hour videos
and contains 89,979 segments of fine-grained actions, cov-
ering 97 verb classes and 300 noun classes. We report top-1
accuracy following the protocol of the original paper [7].
EGTEA [21] is a large-scale egocentric video dataset
which consists of 10321 video clips annotated with 19 verb
classes, 51 noun classes, and 106 action classes. We report
mean class accuracy on the three Train/Val splits.

4.2. Implementation Details

We train two backbones with the proposed Interactive
Prototype Learning framework, i.e., I3D [3] and R(2+1)D-
34 [38]. For I3D, we train both spatial and temporal streams
with 64 RGB frames or optical flow as the input. The back-
bone is initialized using the Kinetics [3] pretrained weights.
IPL is trained for 30 epochs using SGD with a momentum
of 0.9 and a weight decay of 0.0005. The learning rate is
initialized to 0.006 and then reduced by a factor of 10 in the
last 10 epochs. The batch size is set to 32. During training,
the spatial size of input clip is 224 x 224. Random scaling,
random cropping and horizontal flipping are deployed as
data augmentation. During inference, we resize the frame
to 256 x 256 and feed them to the model without cropping.
We average the predictions of 10 uniformly sampled clips
as the final video-level predictions. For R(2+1)D-34 [38],
we train the RGB stream using the IG-Kinetics [12] pre-
trained weights as initialization. The learning rate is set to
0.0004 and reduced by a factor of 10 every 9 epochs. We
use SGD with a momentum of 0.9 and a weight decay of
0.0005 to train the model for 20 epochs. We use 32 frames



Overall Unseen Participants Tail Classes

Method Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy

Verb Noun Act. Verb Noun Act. Verb Noun Act.
Chance [7] 10.68 1.79 0.55 9.37 1.90 0.59 0.97 0.39 0.12
TSN [39] 59.03  46.78 33.57 53.11 4202  27.37 26.23 14.73 11.43
TRN [46] 63.28  46.16  35.28 57.54 4136  29.68 28.17 13.98 12.18
TBN [19] 62.72 4759 3548 56.69  43.65 29.27 30.97 19.52 14.10
SlowFast [10] 63.79  48.55 36.81 57.66  42.55 29.27 29.65 17.11 13.45
TSM [24] 65.32 47.80  37.39 59.68 4251 30.61 30.03 16.96 13.45
IPL I3D 65.66  49.74 3843 59.12 4526  32.17 3217 2034 1551
IPL R2+1)D-34 | 65.74 5045  39.17 61.22  46.01 33.70 | 33.02 18.97 15.22

Table 1. The comparison with the state-of-the-art methods on the EPIC-KITCHENS-100 Test set.

Method Act@1 | Verb@1 | Noun@1
Chance [7] 0.51 10.42 1.70

TSN [39] 33.19 60.18 46.03

TRN [46] 35.34 65.88 45.43

TBN [19] 36.72 66.00 47.23
SlowFast [10] 38.54 65.56 50.02

TSM [24] 38.27 67.86 49.01

I3DT [3] 37.58 66.84 48.48

IPL 13D 39.87 67.82 50.87 (+2.39)
R(Q2+1)D-34T [12] | 37.62 67.28 | 47.55

IPL R(2+1)D-34 40.98 68.61 51.24 (+3.69)

Table 2. The comparison with the baselines and state-of-the-arts
on the EPIC-KITCHENS-100 validation set. “{” indicates our
implementation with two separate classifiers for noun and verb.

as input and the spatial size is 112 x 112 during training and
128 x 128 during testing. The same data augmentation and
multi-crop testing strategy are used as I3D. In the verb-to-
noun selection module, we set K to 5 for the two backbones
on all datasets.

4.3. Comparison with State of the Arts
4.3.1 Results on EPIC-KITCHENS-100

We compare our Interactive Prototype Learning framework
with the state-of-the-art methods on the largest egocen-
tric video dataset EPIC-KITCHENS-100 [7]. TSN [39],
TRN [46] and TSM [24] are based on 2D CNNs. All
the three models employ a two-stream approach that use
both RGB and optical flow. Besides RGB and optical flow
streams, TBN [19] add audio as another modality as well.
SlowFast [10] uses two RGB streams with different resolu-
tions and frame rates.

We experiment the IPL framework using two popular
backbones, i.e., I3D [3] and R(2+1)D-34 [38]. As stated
before, we use two streams (i.e., RGB and optical flow) for
13D, and single stream (i.e., RGB) for R(2+1)D-34. To eval-
uate the performance of the backbone itself, we train two

separate classifiers implemented by FC layers for verb and
noun classification. As shown in Table 2, the IPL frame-
work is able to significantly boost the performance of the
backbones for both I3D and R(2+1)D. IPL improves the
overall top-1 accuracy of noun classification by 2.39% and
3.69% for 13D and R(2+1)D-34, respectively. The perfor-
mance gain mainly comes from the noun-to-verb grouping
and verb-to-noun selection operators. By introducing the
interactions with verb prototypes, the most action-relevant
features can be selected for noun classification. The verb
recognition accuracy is also slightly improved, as the verb
prototypes can also benefit from the interactive learning
scheme. As expected, the dramatic improvements on noun
recognition also lead to better accuracy for action recog-
nition, i.e., 2.29% for I3D (from 37.58% to 39.87%) and
3.36% for R(2+1)D-34 (from 37.62% to 40.98%). We
outperform other state-of-the-art methods (e.g., TSN [39],
TRN [46], TSM [24] and SlowFast [10]) on overall top-1
accuracy. For instance, our IPL R(2+1)D-34 outperforms
TSM by 2.71% on overall top-1 action accuracy.

We evaluate IPL on the test set by submitting our results
to the competition server, as shown in Table 1. Our IPL
R(2+1)D-34 outperforms all the state-of-the-art methods on
noun classification and action classification on the Overall
classes and the Unseen Participants split. Specifically, IPL
R(2+1)D-34 achieves 2.65% gain for overall noun classifi-
cation compared to TSM. IPL I3D has slightly better results
on the Tail Classes, which may presumably due to the two-
stream inputs can better improve the few-shot classes.

4.3.2 Results on EPIC-KITCHENS-55

Compare with the state of the art. We compare IPL with
state-of-the-art 3D CNNs on the EPIC-KITCHENS-55 val-
idation set in Table 3. Using the I3D backbone, the IPL
framework gives an improvement of 1.9% for noun clas-
sification. Notably, using the R(2+1)D-34 backbone, IPL
outperforms the baseline by 4.4% for noun classification.
These results clearly show that IPL works effectively on



Method Act@] | Verb@1 | Noun@1
R50-NL [42] 19.0 49.8 26.1
R(2+1)D-34% [12] 22.5 56.6 32.7
SlowFast [43] 21.9 55.8 27.4

13D [3] 23.5 59.6 31.3

IPL 13D 24.5 59.8 33.2 (+1.9)
R(2+1)D-34[12] 23.6 60.5 31.1

IPL R(2+1)D-34 254 60.7 35.5 (+4.4)

Table 3. Comparison of 3D CNN backbones on the EPIC-
KITCHENS-55 validation set. “t” indicates [12] uses two
R(2+1)D-34 backbones, one for verb classification and the other
for noun. Our “IPL R(2+1)D-34" and “R(2+1)D-34" use a shared
backbone for both tasks.

Method Obj | Act@1 | Verb@1 | Noun@1 | GFLOPs
LFB Max [42] v | 228 52.6 31.8 6664
SAP [40] v | 250 55.9 35.0 2871
IPL R(2+1)D-34 254 60.7 35.5 153

Table 4. Compare with the state-of-the-art methods using object
detection annotations on the EPIC-KITCHENS-55 validation set.

EPIC-KITCHENS-55. With the clear gains in noun classi-
fication, the action classification accuracy is also improved
on both backbones. For instance, there is a 1.6% gain when
we compare IPL R(2+1)D-34 with its baseline.

Compare with methods using object detection annota-
tions. As the EPIC-KITCHENS-55 dataset provides ob-
ject detection annotations, a few works [42, 40] utilize
these annotations for better egocentric video classification.
Although object annotations can improve noun classifica-
tion, they are also costly and not always available. Be-
sides, SAP [41] and LFB [42] run a heavy-weight detec-
tor (ResNeXt-101-FPN) on high-resolution frames, which
leads to much higher computational cost. In our paper, we
do not use any additional annotations and only leverage a
single CNN backbone for both noun and verb classification.
As shown in Table 4, we obtain higher results compared to
SAP [40] and LFB Max [42] with much lower FLOPs. This
demonstrates the effectiveness and efficiency of IPL.

4.3.3 Results on EGTEA

EGTEA [21] provides gaze and hand mask annotations
which have been used by the state-of-the-art methods
to provide strong supervision on spatio-temporal atten-
tion. EgoIDT+Gaze [23] and 13D+Gaze [21] utilize gaze
point to locate and select discriminative features. 13D
(joint) [3] jointly optimizes the two-stream I3D networks.
I3D+EgoConv [34] encodes head motion and hand masks,
and further injects this information to a two-stream I3D
model. Prob-ATT [22] also use gaze supervision to achieve
high recognition results. Most existing methods on EGTEA

Mean Class Accuracy

Methods Sphicl  Spliz _ Sphis _ Avg
EgoIDT+Gaze [23] 4255 3730 37.60 39.13
I3D (joint) [3] 55776 53.14 5355 5415
I3D+Gaze [21] 5374 5030 49.63 51.22
I3D+EgoConv [34] 54.19 5145 4941 51.68
Ego-RNN-2S [36] 5240 50.09 49.11 5053
LSTA-2S [35] 53.00 - - -

Mutual Context-2S [15] | 55.70 - - -

Prob-ATT [22] 56.50 5352 5358 5453
Prob-ATT+Gaze [22] 5720 53775 5413 55.03
13D 56.78 5492 5394 5521
IPL I3D 60.15 59.03 5798 59.05

Table 5. The comparison with the state-of-the-art methods on the
EGTEA dataset. “t” indicates our implementation with two sep-
arate classifiers.

like I3D (joint) [22] and Prob-ATT [22] only use a single
action classifier trained with action labels. In contrast, our
methods utilizes two separate classifiers for verb and noun
classification. And we train the models with both verb and
noun labels. For a fair comparison, we also implement the
I3D baseline using two separate classifiers. This leads to
slightly better results compared to I3D (joint) as we use both
verb and noun labels. As shown in Table 5, IPL I3D outper-
forms our strong baseline and the state-of-the-art methods
by a large margin on all three splits, even though we do not
utilize the gaze and hand mask annotations.

4.4. Ablation Studies

Compared to NetVLAD In IPL, the verb prototypes are
used as anchors to assign features for noun classification
and the noun features are selected based on the verb pre-
dictions. To investigate the effectiveness of this interactive
learning scheme, we implement a baseline model that uses
the NetVLAD [1] module for noun classification and dis-
cards the interaction between the verb and noun classifi-
cation. As shown in Table 6, our IPL R(2+1)D achieves
higher results on both verb and noun classification than the
“R(2+1)D + NetVLAD” model, and boosts the action top-
1 accuracy by 2.18%. It demonstrates that our interactive
learning scheme can not only generate more discriminative
representations for the noun classification but also enhance
the verb prototypes to improve verb classification.

The verb-to-noun selection To disentangle the active ob-
ject features from distracting object features, we propose
to select top-K features based on the verb predictions. To
demonstrate the effectiveness of this design, we implement
a model that utilizes all feature groups for noun classifica-
tion. As shown in Table 6, the “IPL R(2+1)D w/o Selec-
tion” model achieves 49.68% noun top-1 accuracy, which
is lower than IPL R(2+1)D by 1.56%. Besides, without the



Pred: open fridge Pred: wash knife GT: wash knife

GT: open fridge

Figure 3. Assignments visualization of the IPL. R(2+1)D model. We illustrate the sum of assignments on the top-K verb prototypes for
each feature vector on the spatio-temporal feature map. For each input clip, we uniformly sample four frames. Higher assignment values
shows in red. We also print the predictions and the ground-truth above the frames (Green for correct predictions and Red for failure cases).

GT wash spoon

scoop coffee

turn-on tap pour-up oil skin carrot put-down knife pick-up utensil
Baseline ash saucepan turn-on gas pour-up rice put-down pasta pick-up spoon open lid pick-up bin
IPL wash spoon turn-on tap pour-up oil cut carrot pick-up knife open coffee pick-up lid

Figure 4. Qualitative results of the IPL R(2+1)D model and the baseline model.

Method | Act@l | Verb@l | Noun@1
R(2+1)D Baseline 3762 | 6728 47.55
R(2+1)D + NetVLAD 38.80 | 67.39 49.38

IPL R(2+1)D w/o Selection 38.50 66.82 49.68
IPL R(2+1)D w/o BG Center | 40.02 68.20 50.30
IPL R(2+1)D 40.98 68.61 51.24

Table 6. Ablation studies on the EPIC-KITCHENS-100 Val. set.

verb-to-noun selection, the result on verb classification also
drops by 1.59%. This demonstrates that the combination of
the features on the irrelevant prototypes does harm to both
the verb classification and noun classification.

The background center We conduct the experiment
without the background center. As shown in Table 6, the
top-1 accuracy of the model “IPL w/o BG Center” on noun
recognition drops by 0.94%. This result demonstrates the
effectiveness of introducing a background center. This de-
sign may reduce the noise information during the feature
assignment and enhance the selected noun features.

4.5. Qualitative Results

For each input video, K noun feature groups are selected
based on Top-K verb predictions for noun classification.
Thus, for each feature vector in the spatio-temporal feature
map, the assignments on the K verb prototypes determine
its contributions to the final noun classification. We sample
four frames corresponding to the final four spatial feature
maps and plot the sum of assignments on Top-K verb proto-

types. As shown in Fig. 3, the region with high assignment
weights indicates the interacting area and the location of
the active objects. These qualitative results explain why our
IPL can improve the recognition accuracy of active objects.

We compare the predictions of our IPL. R(2+1)D model
to its baseline in Fig. 4. In the first example, the baseline
model classifies the video to “saucepan” as its noun predic-
tion, but “saucepan” is actually the distracting object next
to the active object “spoon”. In contrast, our IPL correctly
recognizes the active object. As shown in the fifth example,
although the prediction for verb classification is not correct,
our IPL can recognize that the active object is “knife” rather
than “spoon”. This is because the verb-to-noun selection
mechanism is robust to the verb classification results.

5. Conclusion

In this paper, we present an interactive prototype learn-
ing (IPL) framework for egocentric video classification.
IPL introduces a set of discriminative verb prototypes to en-
hance the interactions between noun and verb classification.
We evaluate IPL on three large-scale egocentric video clas-
sification datasets. Experimental results demonstrate that
IPL is able to effectively learn action-centric noun repre-
sentations. In the future work, we will take a closer look
into the affordance of the active object. Besides, we will
make full use of the long-range temporal context to help the
active object recognition.
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