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Abstract

Understanding network generalization and feature dis-
crimination is an open research problem in visual recogni-
tion. Many studies have been conducted to assess the qual-
ity of feature representations. One of the simple strategies
is to utilize a linear probing classifier to quantitatively eval-
uate the class accuracy under the obtained features. The
typical linear probe is only applied as a proxy at the in-
ference time, but its efficacy in measuring features’ suit-
ability for linear classification is largely neglected in train-
ing. In this paper, we propose an episodic linear probing
(ELP) classifier to reflect the generalization of visual rep-
resentations in an online manner. ELP is trained with de-
tached features from the network and re-initialized episod-
ically. It demonstrates the discriminability of the visual
representations in training. Then, an ELP-suitable Regu-
larization term (ELP-SR) is introduced to reflect the dis-
tances of probability distributions between the ELP classi-
fier and the main classifier. ELP-SR leverages a re-scaling
factor to regularize each sample in training, which modu-
lates the loss function adaptively and encourages the fea-
tures to be discriminative and generalized. We observe sig-
nificant improvements in three real-world visual recognition
tasks: fine-grained visual classification, long-tailed visual
recognition, and generic object recognition. The perfor-
mance gains show the effectiveness of our method in im-
proving network generalization and feature discrimination.

1. Introduction
Deep neural networks have achieved impressive im-

provements in visual recognition. The neural networks
trained on large-scale visual recognition datasets, e.g., Ima-
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geNet [30], OpenImages [27], demonstrate remarkable gen-
eralization capabilities. The learned visual representations
are compact and enjoy strong discriminability. Many works
have been conducted to theoretically explain the rationale
behind deep networks’ generalization [60], but this problem
is still largely unsolved and remains to be investigated.

There are a few analytical tools to probe deep neural
networks’ learning and generalization capabilities. Early
works utilize visualization tools to understand the optimized
parameters or employ dimensionality reduction techniques
to visualize the quality of learned representations [42, 51,
59]. Though helpful, such visualization techniques only
provide qualitative inspections on deep networks [8]. Some
works develop geometric probes to analyze the geometric
properties of object manifold and connect object category
manifolds’ linear separability with the underlying geomet-
ric properties [46]. These methods reveal the structure of
memorization from different layers in deep networks but
only probe layer capacity at the inference time, as shown
in Fig. 1 (a).

Another simple strategy is to perform linear probing.
One can use linear probes to evaluate the feature’s quality
quantitatively. Since the discrimination capability of lin-
ear classifiers is low, linear classifiers heavily rely on the
quality of the input representation to obtain good classifi-
cation accuracy [3]. Alain et al. [1] use linear probes to
examine the dynamics of intermediate layers. The linear
probe is a linear classifier taking layer activations as inputs
and measuring the discriminability of the networks. This
linear probe does not affect the training procedure of the
model. Recently, linear probes [3] have been used to evalu-
ate feature generalization in self-supervised visual represen-
tation learning. After representation pre-training on pretext
tasks [3], the learned feature extractor is kept fixed. The
linear probe classifier is trained on top of the pre-trained
feature representations. Though conceptually straightfor-
ward, linear probes are effective and have been widely used
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(a) The typical linear probe test the feature separability at the test time.

(b) Our episodic linear probing classifier provides measurements at the training time.

1) The training stage

2) The test stage

Figure 1. The typical linear probe in testing (a) and our ELP in
training (b). Our ELP is episodically re-initialized to maintain
simplicity. It effectively measures the discrimination of visual rep-
resentations in an online manner.

in measuring the discriminability of visual representations.
Noticeably, the linear probing classifier is only used in test-
ing. A natural question arises: can we utilize linear probes
during training and bring the signal from the linear probes
to regularize the model training?

In this paper, we introduce a simple strategy to regular-
ize the network to be immediately plausible for an episodic
linear probing classifier. Our simple framework (Fig. 1
(b)) consists of a main classifier, an episodic linear prob-
ing classifier, and a regularization term. The regulariza-
tion term considers the relation between the main classifier
and the episodic linear probing classifier, which effectively
penalizes examples that are not immediately plausible for
episodic linear probes.

First, we propose an episodic linear probing (ELP) clas-
sifier to estimate the discrimination of visual representation
in an online way. Similar to the existing linear probes [1],
ELP is applied on top of the last layer of a deep network.
ELP classifier is trained to classify the detached features
into the same label space as a regular classifier. Different
from [1], ELP is applied during model training. It is episod-
ically re-initialized at each epoch. This maintains its sim-
plicity, avoids classifier overfitting, and prevents the classi-
fier from memorizing features. ELP implicitly reflects the
feature discriminability and separability [40,41]. If the ELP
classifier can quickly classify the feature points, it indicates
that the given features are easily separable and would po-
tentially be more generalizable.

Second, we introduce a penalization for less suitable
examples for an episodic linear probe. Intuitively, given
a training example, if the episodic linear probe and the
main classifier contradict each other, e.g., the episodic linear
probe receives a low prediction score while the main clas-

sifier produces a high prediction score, it indicates that the
main network exhibits overfitting on the given instance and
a larger penalty should be enforced for proper regulariza-
tion. Thus we design an ELP-suitable Regularization term
(ELP-SR) to mitigate the intrinsic model bias and improve
the linear separability of the learned features. ELP-SR sets a
re-scaling factor to each instance and adaptively modulates
the cross-entropy loss to avoid overfitting. The re-scaling
factor considers the deviation between an example’s predic-
tive score from the main classifier and ELP classifier, which,
to a certain extent, assesses the example’s suitability for lin-
ear classification.

Without bells and whistles, our method achieves signifi-
cant improvements for visual recognition tasks in the wild,
providing consistent gains for fine-grained, long-tailed, and
generic visual recognition. The fine-grained visual recogni-
tion datasets often contain high inter-class similarities. The
long-tailed visual recognition datasets exhibit long-tailed
data distribution, which is realistic in real-world recogni-
tion problems. We extensively evaluate the generalization
performance on six standard datasets. The results indicate
that our strategy empowers various deep networks with bet-
ter discrimination and mitigates the model bias.

2. Related Work
Various works have been proposed to learn visual rep-

resentation based on deep learning. In diverse recognition
tasks in the wild, deep neural networks possess the power-
ful ability to learn and represent images to high-dimensional
features. With the high-quality features, some simple clas-
sifiers [29, 56] are components to recognize the samples.
Further, the quality of features is influenced by many fac-
tors. We roughly divided the factors into three aspects: data
processing, network design, and training manner. Though
the exact effect of representation learning [60] remains to
be investigated, numerous researchers keep exploring and
propose many valuable solutions.

For data processing, large-scale datasets provide consid-
erable network samples and are the most straightforward
way to improve representation. Benefiting from the power-
ful ability of networks, taking large-scale datasets as inputs
lead the network to learn various samples and memorize
plenty of properties for discriminating. Some diverse and
hard examples may be difficult in a limited data scale [2,35].
Under the view of larger scales of collections, it is always
possible for the network to mine particular patterns. Be-
sides directly collecting real data, pre-processing [11,64] or
generating data [63] are also equivalent. Various augmenta-
tions [43, 50] enforce the networks to solve problems with
higher requirements and urge the network to be generalized
to different conditions.

Moreover, well-designed network structures also dra-
matically boost representation and become the hottest di-



rection in recent years. Diverse methods constantly emerge
like skip-connection [19, 22], fusing channels [48], atten-
tion strategies [4,37], architecture searching [5], transform-
ers [52, 54], etc. With the same inputs, these methods ex-
plore different directions to boost the network’s capacity.
Meanwhile, almost all kinds of visual tasks [30,33] develop
further with better networks.

Furthermore, besides data processing and network de-
signs, the training manner is also crucial for visual represen-
tation. It contains various aspects like the optimizer [20,39],
regularization [31, 32], learning manner [25, 44], etc. In
this direction, regularization plays an important role. It
can be reflected in the loss function [9, 32], training strate-
gies [18], etc., and is general to various networks and
datasets. A proper regularization can leverage the network
to learn better visual representation, for example, avoiding
overfitting [32], explicit attention to the target [9], better
diversity [14], etc. Vikash et al. [41] propose an interest-
ing margin to describe the separability of features. Rather
than focusing on the accuracy of the classifier, the quality
of features can be reflected through immediate suitability.
The more discriminative features are considered more than
memorable by the classifier.

In our work, going further with the immediate suitability,
we propose an episodic linear probing (ELP) classifier to re-
flect the generalization of visual representation online. ELP
can be applied as a novel regularization to encourage the
network to produce more discriminative features. Rather
than re-weighting according to samples’ easiness [25] or a
meta set with iterative learning [44], we design an ELP-
suitable regularization (ELP-SR) and leverage the ELP-SR
to the regular loss function. Experimental results show that
ELP-SR generally improves the performances of networks
in three different benchmarks.

3. Method
In this work, we introduce an auxiliary episodic linear

probing classifier to provide additional regularization for
better representation learning. As illustrated in Fig. 2, our
framework consists of three components, i.e., a deep neu-
ral network, a main linear classifier, and an episodic linear
probing classifier. We illustrate our episodic linear probing
classifier in Section 3.1. The details of the ELP-suitable reg-
ularization are introduced in Section 3.2. In Section 3.3, we
describe the training and inference strategies of the model.

3.1. Episodic Linear Probing Classifier

3.1.1 Review of The Typical Linear Probes

Training the Feature Extractor. Given a training sample
x, a neural network (F ) extracts its feature h. A linear clas-
sifier (Cls) projects the feature to a probability distribution
p. The cross-entropy (CE) loss calculates the cross-entropy
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Figure 2. The training flow of our framework. Black lines indicate
that the gradient can be back-propagated, while the blue dotted
lines indicate that the gradient back-propagation is stopped.

between p and the ground-truth distribution y. Formally,
we denote the typical training procedure below:

h = F (x), (1)
p = Cls(h), (2)

ℓce(p,y) = −
C∑

j=1

yj log(pj), (3)

where C is the number of categories. yj = 1 if j is the
ground-truth label. Otherwise, yj = 0. pj is the prediction
score of class j. The feature extractor and the classifier are
jointly optimized end-to-end using back-propagation.
Test-time Linear Probing. Linear probing is usually built
to assess the quality of deep representations after the neural
network is sufficiently trained [1]. That amounts to train-
ing an auxiliary linear classifier on top of the pre-trained
features. The parameters of the linear probe are randomly
initialized, while the original classifier layer is neglected.
The pre-trained backbone is frozen and not trained during
linear probing. Since the complexity of the auxiliary clas-
sifier is not sufficient to provide additional discrimination,
the classification performance heavily depends on the qual-
ity of the feature representations. Thus, predictive scores
of the auxiliary linear classifier can probe the discrimina-
tion of the input features. During implementation, a linear
probe can be extended to a Multi-Layer Perceptron (MLP)
probe where the linear layer is replaced with a MLP [21].

The existing probes are mainly used during inference
time, either providing quantitative evaluation on pre-trained
features or interpreting intermediate layers [15]. This drives
us to incorporate a linear probe during training and borrow
the simple nature of the linear probe for network regulariza-
tion.

3.1.2 Episodic Linear Probing Classifier

Motivated by the efficacy of test-time linear probe in assess-
ing representation quality, we aim to design a linear prob-
ing classifier in training to measure the discrimination of a



neural network and further leverage the probing signal to
empower representation learning. We introduce an episodic
linear probing (ELP) classifier and discuss its weight update
scheme in training.
Detached Linear Probing Classifier in Training. When
incorporating a linear probing classifier in training, we need
to maintain its independence from the main classifier. While
keeping the main classifier and the backbone network un-
changed, we build a new episodic linear probing classifier
on top of the feature extractor. We stop the linear probe clas-
sifier’s gradient to back-propagate to the backbone network.
This helps the linear probe not be biased by the main clas-
sifier and produce a neutral evaluation of the discrimination
of the feature representations.

Formally, the episodic linear probing classifier is trained
to classify the features into C categories using the same la-
bels assigned to the main classifier,

p = Clsmain(h), (4)
q = Clselp(stop-grad(h)), (5)

ℓmain(x,y) = ℓce(p,y), (6)
ℓelp(x,y) = ℓce(q,y). (7)

Clsmain is the main classifier, and it produces a probabil-
ity prediction of p. Clselp is the linear probe classifier, and
it generates a probability prediction of q. Clselp is trained
in an online manner, but its optimization is detached from
the main branch. “stop-grad‘” indicates that feature h is
detached to train Clselp. The gradients from the ELP classi-
fier are unavailable to the backbone and main classifier, and
vice versa. The main difference between the detached linear
classifier and the test-time linear probe is that the features of
the detached linear classifier are adaptively changed by the
network, while the features of the test-time linear classifier
are always fixed.
Episodic weight re-initialization overcomes overfitting.
Training the detached linear classifier with the same num-
ber of epochs as the main classifier would lead to the de-
tached linear classifier overfitting the features. This over-
fitting should be avoided because the simple linear probe
is supposed to reflect the discrimination of the features. If
the ELP classifier memorizes all samples, it would not be
competent to evaluate the features effectively. To prevent
the ELP classifier from overfitting the training data, we re-
initialize its parameters episodically every I epochs where
I indicates episodic re-initialization interval. Specifically,
given a linear classifier parameterized with W and b, where
W is the projection matrix, and b is the bias, both W and b
are randomly re-initialized at the interval of I epochs.

The episodic linear probe enables us to measure and un-
derstand the feature discriminability throughout the training
process. A larger value of I enforces the ELP classifier to
be better trained, but it makes the ELP classifier more likely

to be overfitted. In contrast, the ELP classifier is under-
fitted, if I is too small. An under-fitted ELP classifier may
not well describe the generalization capabilities of the fea-
tures. In practice, we set I as a hyper-parameter. Empiri-
cally, I = 2 achieves consistent good probing performances
across datasets.

3.2. The ELP-Suitable Regularization

ELP-Suitable Regularization through loss modulation.
ELP assesses the features’ separability in an online way.
The standalone ELP is detached from the backbone and
does not influence the main network. In this paper, we aim
to utilize the prediction from the auxiliary ELP classifier to
effectively improve the discriminability of the main branch.
However, the design of this regularization is not straightfor-
ward. Considering the episodic nature of the ELP classi-
fier, ELP’s prediction is periodic and not as confident as the
main classifier. If the regularization is not well constructed,
the performance of the main branch would be severely im-
paired.

In this paper, we introduce a simple formulation that
modulates the cross-entropy loss with an adaptive factor ϕ,

LELP−SR =

B∑
i=1

stop-grad(ϕi) ∗ ℓce(pi,yi), (8)

where pi is the prediction probability from the main classi-
fier, B is the batch size. The scalar factor ϕi is assigned to
each instance to modulate its cross-entropy loss adaptively.
ϕ measures the main network’s suitability for an ELP clas-
sifier. If an instance is not suitable for the ELP classifier,
e.g., the instance may be not discriminative, or an out-of-
distribution data point, ϕ imposes a relatively large value so
that the network would pay more attention to this instance.
Our ELP-Suitable Regularization (ELP-SR) effectively mit-
igates the intrinsic model bias and regularizes the network
towards better linear separability.

We detach the gradients from ϕ so that the factor only
influences the magnitude of the loss gradients, but the gra-
dient orientation is not altered. This makes the optimization
progress relatively easy and stable. The strategy works sur-
prisingly well in practice.
The instantiation of the ELP-SR factor. As aforemen-
tioned, ϕ aims to measure the main network’s suitability for
an ELP classifier. Given an instance x with the label c, we
instantiate the ELP-SR factor by considering the prediction
score of the main classifier (pc) and the prediction of the
ELP classifier (qc). We utilize two elements when we con-
struct the regularization factor ϕ.

First, the distance metric (D) between the prediction of
the ELP classifier and the prediction of the main classifier
should be concerned. The distance should reflect the main
classifier’s confidence gap compared to the ELP classifier.



If the distance is minimized, the main classifier is pushed to
act like a less-trained linear classifier. Relatively, The fea-
tures would be remarkably discriminative if a less-trained
classifier is already sufficient for recognizing, Therefore,
this metric encourages the main classifier to become sim-
pler, promoting the features to be more discriminative. We
instantiate D by simply computing the ℓ1 distance between
pc and qc, i.e., D = |pc − qc|.

Second, we incorporate a normalization metric (R) to re-
veal the discriminability of both the ELP classifier and the
main classifier. The distance metric (D) measures the rela-
tive confidence gap, but we should also consider the abso-
lute values of the confidence scores. If the distance between
pc and qc is small, but both absolute scores are low, the net-
work has not been well optimized to classify the instance.
Thus, we should normalize the distance with a normaliza-
tion metric. For simplicity, we set R as the average of pc

and qc, i.e., R = (pc + qc)/2.
We formulate the ELP-SR factor ϕ as,

ϕ = (
D

R
)γ = (

2|pc − qc|
pc + qc

)γ , (9)

where γ smoothly adjusts the rate between D and R. We
empirically study other ELP-SR factor variants in the ex-
periment section.

3.3. Training and inference

In the training phase, we calculate the softmax cross-
entropy loss for both the main classifier and the ELP clas-
sifier. Our ELP-SR loss is summed with these losses. The
overall training objective is below,

L =

B∑
i=1

ℓmain(pi,yi) + ℓelp(qi,yi) + ϕi ∗ ℓce(pi,yi)

(10)

In the test phase, we remove the auxiliary ELP classifier
and only keep the main classifier. The final prediction is
obtained only from the main classifier. Our framework does
not introduce any additional overhead during testing.

4. Experiments
In the challenges of diverse objects of images in the wild,

our method shows significant superiority for generalization.
We evaluate three classification tasks, i.e., fine-grained vi-
sual recognition, long-tailed recognition, and generic ob-
ject recognition. First, since the classes in fine-grained
recognition are similar, and samples are difficult to be rec-
ognized even by humans, the fine-grained recognition task
brings extra challenges to learning discriminative features.
Second, long-tailed recognition involves the extremely im-
balanced distributions of data samples. This requests the

method to possess generalization ability and recognize the
tailed classes with limited samples. The evaluations of these
tasks reveal the advantages of our method in improving vi-
sual representations.

We further evaluate our method on ImageNet-1K to
study the generalization ability of ELP-SR. Besides the
classification accuracy metric, we also report the results of
a k-nearest-neighbor (KNN) classifier on the test set. This
further manifests the effectiveness of our method in improv-
ing the discriminability of feature representations. More-
over, we provide ablation studies to compare different γ, I,
and formulations of the ELP-SR factor. To further demon-
strate the ability of the ELP classifier, we present a compar-
ison of the linear classifier’s accuracy. The results reflect
that the network with ELP-SR produces more discrimina-
tive and generalized features.

To be noticed, for all the tasks, we did NOT introduce
any additional annotations nor incorporate extra parameters
at the inference time. During testing, only the backbone
networks are used to produce predictions.

4.1. Fine-grained Visual Recognition

Classes in fine-grained recognition are similar. They are
difficult to distinguish, even for a human. Meanwhile, sam-
ples in every class are diverse [2]. Objects may be shown in
various angles, illuminations, occlusions, backgrounds, etc.
These induce fine-grained categories to show large intra-
class variances, but small inter-class variances [2]. Sam-
ples in fine-grained classification are hard to be generalized
and discriminated, which brings difficulties for learning dis-
criminative features by networks.
Dataset and Implementation Details. To show the ef-
ficacy, we compare the performances on three standard
benchmarks: CUB-200-2011 (CUB) [53], Stanford Cars
(CAR) [28], and FGVC-Aircarft (AIR) [36].

Following the same training procedure in [10], we adapt
ResNet-50 [19] pre-trained by ImageNet [30] as the back-
bone model. As the regular augmentations [10, 16, 65] in
this task, resizing, random crops, rotations, and horizontal
flips are applied. After operating these standard transforma-
tions, the final inputs become 448×448 resolutions. Similar
to the ResNet50 baseline [10, 65], we train our method for
240 epochs and optimize the loss function by SGD. In our
method, we report the results of γ = 3 for all three datasets
with D = pc − qc and R = (pc + qc)/2. For CUB, CAR,
and AIR, we set I = 2, 2, and 1, respectively. These are
the best settings for parameters and will be discussed in the
ablation section 4.4.
Experimental Results. As in Table 1, our method achieves
significant improvements based on the ResNet50 baseline.
Without bells and whistles, our results are competitive or
even outperform many recent methods with complicated
network designs [24], additional augmentations [10, 16], or



Method Dataset
CUB CAR AIR

B-CNN [34] 84.1 91.3 84.1
HIHCA [6] 85.3 91.7 88.3
RA-CNN [17] 85.3 92.5 88.2
OPAM [38] 85.8 92.2 -
Kernel-Pooling [13] 84.7 91.1 85.7
MA-CNN [62] 86.5 92.8 89.9
MAMC [47] 86.5 93.0 -
HBP [58] 87.1 93.7 90.3
DFL-CNN [55] 87.4 93.1 91.7
NTS-Net [57] 87.5 93.9 91.4
DCL [10] 87.8 94.5 93.0
PMG [16] 88.9 95.0 92.8
ACNet [24] 88.1 94.6 92.5
LIO [65] 88.0 94.5 92.7
ResNet50 Baseline 85.5 92.7 90.3
ResNet50 Baseline + ELP-SR 88.8 94.2 92.7

Table 1. Comparison of three benchmarks of fine-grained classifi-
cation. Without additional augmentations or network designs, our
method achieves significant improvements.

multi-scale features [16, 65]. Merely utilizing naive back-
bone with ELP-SR in training, the simple backbone net-
works boost 3.3%, 1.5%, and 2.4% respectively in three
datasets which are significant improvements in this task.
Boosts in this task reveal that our method effectively im-
proves the networks’ ability to discriminate and generalize
samples. To further manifest the superiority of our method,
more discussions will be presented in 4.4.

4.2. Long-tailed Visual Recognition

In long-tail recognition, the data distributions of differ-
ent classes show extreme imbalance. As the long-tailed dis-
tribution, a handful of ‘head’ classes contain considerable
samples, but a large number of ‘tail’ classes only include
limited samples. The networks are biased toward ‘head’
classes, and the samples in ‘tail’ classes are hard to be gen-
eralized. In this section, we also evaluate the performances
of our method under the challenging long-tailed distribu-
tion.
Dataset and Implementation Details. The experiments
are operated based on long-tailed CIFAR-10 and CIFAR-
100 datasets [29]. We first produce several versions of long-
tailed datasets following [7] under different imbalance ra-
tios, which denotes the ratio between the largest and small-
est numbers of samples in classes. We report the results in
three kinds of imbalance ratios which are 100, 50, and 10,
respectively. To perform fair comparisons, we evaluate our
method based on the ResNet-32 baseline from [7].
Experimental Results. As shown in Table 2, ELP-SR
dramatically improves the performances of the baseline
method in all the settings and datasets. The improvements

Method CIFAR-10 CIFAR-100
Imbalance ratio 100 50 10 100 50 10

Focal Loss [32] 70.4 76.7 86.7 38.3 43.9 55.7
CB Focal [12] 74.6 79.3 87.1 39.6 45.2 58.0
Meta-weight [44] 75.2 80.0 87.8 42.0 46.7 58.4
CDB-CE [45] - - - 42.5 46.7 58.7
Mixup [61] 73.1 77.8 88.3 39.6 45.0 58.2
ERM [7] 70.4 74.8 86.4 38.3 43.9 55.7
ERM [7] + ELP-SR 77.4 81.2 87.9 39.1 44.7 57.9
ERM [7] + ELP-SR (τ = 1) 77.5 81.5 88.4 42.4 48.3 58.9
ERM [7] + ELP-SR (τ∗) 78.0 81.5 88.7 42.4 48.3 59.1
LDAM [7] 77.0 81.0 88.2 42.0 46.6 58.7
LDAM [7] + ELP-SR 78.2 82.3 88.1 43.9 48.2 59.1

Table 2. Comparison of top-1 validation accuracy of different
methods on imbalanced CIFAR-10 and CIFAR-100 datasets. All
results are implemented based on ResNet-32. τ = 1 indicates ap-
plying τ -normalization [26] with τ = 1. τ∗ stands for results with
the best settings of τ .

in CIFAR-10 of imbalance ratio 100 and 50 are even larger
than LDAM [7]. Moreover, after adapting the normaliza-
tion from [26], the results of our method show more com-
petitiveness in this task. All results in different settings out-
perform LDAM.

Besides, we further investigate our method based on the
LDAM [7]. By minimizing the margin-based boundary
considering the generalization [7], LDAM is well-designed
for long-tailed recognition and boosts the performances dra-
matically. Meanwhile, our method can achieve higher per-
formances on the foundation of LDAM. Though without
specific consideration for the long-tailed distribution, ELP-
SR offers general improvements to this task. These results
demonstrate that our method helps the network generalize
and produce discriminative features against the challenging
distributions.

4.3. Generic Visual Recognition on ImageNet

To reveal the generalization of ELP-SR, we further in-
vestigate our method in generic object recognition on the
standard benchmark for visual representation.
Dataset and Implementation Details. We evaluate ELP-
SR on ImageNet-1K [30], containing 1.28 million im-
ages with 1000 categories. To show the effectiveness and
generalization, we apply ELP-SR on different backbone
networks, which are ResNet-50 [19], ResNet-101 [19],
ResNet-152 [19], BN-Inception [23], Inception-V3 [49],
and Inception-ResNet-V2 [48]. According to the standard
implementations of these works, we adapt SGD with mo-
mentum 0.9 as the optimizer. All the networks are trained
with the augmentations of random crops and horizontal
flips. For ResNet-50, ResNet-101, ResNet-152, and BN-
inception, we first resize the images to 256×256 resolutions
and then randomly crop them to 224× 224. For Inception-
V3 and Inception-ResNet-V2, we resize to 320 × 320 and



Backbone Top-1 Accuracy Top-5 Accuracy
Baseline ELP-SR Baseline ELP-SR

ResNet50 76.13 76.82 92.86 93.32
ResNet101 77.37 77.86 93.54 94.06
ResNet152 78.31 78.77 94.04 94.42
BN-Inception 73.52† 74.05 91.56† 91.74
Inception-V3 77.45 78.12 93.56 94.04
Inception-ResNet-V2 79.63† 80.22 94.79† 95.24
SE-ResNet50 77.05 77.45 93.48 93.88
SE-ResNet101 77.62 77.94 93.93 94.38
SE-ResNet152 78.43 78.61 94.27 94.53

Table 3. Comparison of single-crop accuracy (%) on the
ImageNet-1K validation set. Different backbones with our method
show significant improvements. To perform a fair comparison, †
indicates the results implemented and re-trained by ours.

randomly crop to 299 × 299 as the corresponding imple-
mentations in their works [48, 49]. As in Table 3, we report
top-1 and top-5 accuracy respectively and compare all the
backbones with ELP-SR.
Experimental Results. As in Table 3, with ELP-SR, all
backbone networks achieve performance gains. The re-
sults reveal that our method is valuable to various backbone
models and generally ameliorates the representations of net-
works. Almost all the backbones obtain about a 0.5% per-
cent increase in top-1 accuracy.

Furthermore, to verify the general improvements intro-
duced by our method, we explore the performances of our
method with SE-block [22]. As shown in Table 3, though
SE-block already promotes the performances, our method
leads to further boosts on the fundamental of SE-block [22].
k-nearest neighbors accuracy. To reveal the effectiveness
of our method, we provide an additional evaluation with the
KNN classifier [56]. For feature vector h, we select the
top k nearest neighbors by the weights exp(h · h′/t) corre-
sponding to the labels, where h′ indicates features from the
training set and t is a temperature term. We apply t = 0.1
in our experiments.

As shown in Table 4, the results with 20 and 200 near-
est neighbors are displayed. With the KNN classifier, our
method outperforms the backbone network. This reflects
that the features after training with ELP-SR become more
discriminative.

In all, the general improvements in all the backbones,
methods, and tasks reflect that ELP-SR is not sensitive
to particular networks, designs, or visual challenges. It
provides a valuable regularization for visual representation
learning.

4.4. Ablation Studies

4.4.1 Ablation on Hyper-parameters

Episodic interval I. The number of periodical intervals
prevents the ELP from overfitting the features. We exper-

Method 20 200
ResNet50 75.04 73.21
ResNet50 + ELP-SR 75.48 73.88

Table 4. KNN accuracy on ImageNet-1K. Results of accuracy with
20 and 200 nearest neighbors are presented.

iment with the different values of I in the CUB dataset.
As shown in Table 5, the performances are influenced by I.
The larger I induces the degradation of performances. With
plenty of training iterations, the ELP classifier tends to be
overfitting and cannot measure generalization effectively.

Besides, we also operate comparisons on the ImageNet
dataset. The model achieves 76.13, 76.82, and 76.30 when
I equals to 1, 2, and 3, respectively. The proper value of
I can better empower the advantages of ELP. Minor I may
not be sufficient for the construction of ELP. The more sig-
nificant I may induce degradation of the ability of the ELP
classifier to indicate features’ discrimination. Thus, we ap-
ply I = 2 in our experiments as this condition generally
shows improvements in several datasets.
γ in the SR Factor. The parameter γ is responsible for ad-
justing the intensity of regularization. Since D

R is always
lower than 1, the larger γ leverages smaller regularization
for the inputs. As shown in Table 5, we compare multi-
ple conditions of γ in fine-grained classification. The vari-
ances of γ slightly influence the performances. A proper
γ leads to better performances but is not deterministic for
fine-grained classification. Moreover, we evaluate differ-
ent γ values under the condition of I = 2 on ImangeNet-
1K. The recognition accuracies are 76.23, 76.82, and 76.30
when γ is set to 1, 2, and 3, respectively.
The Variations of SR Factor. We further investigate our
ELP-SR in different forms, as shown in Table 6. First, for
regularization, the confidences of the ELP classifier reflect
the discriminability of features. Since the main classifier
tends to be overfitting, pc is relatively higher and close to
1. Thus, a similar effect may occur for 1 − qc and pc − qc.
As shown in Table 6, both formulations enable regularizing
the networks to perform better while the model with pc−qc

achieves a higher result. This is because pc − qc provides
a more precise measurement of the deviation between the
main classifier and the ELP classifier.

Second, to formulate the normalization term, we require
both confidences of the ELP classifier and the main classi-
fier to become higher. The higher confidence of the main
classifier indicates that the sample can be correctly recog-
nized. This is a primary requirement for better represen-
tation of the feature. If the features are hard to recognize
even for the main classifier, this may indicate that the vi-
sual representation quality is relatively low. It is a primary
criterion that the network should provide at least recogniz-
able features. As shown in Table 6, higher performances are



shown if applying the normalization terms. Both pc+qc and
pc ∗ qc are valid to normalize our ELP-SR. Third, only the
regularization of higher qc can also boost the performances.
Without the normalization term, the impact of ELP-SR also
guides the networks to be more generalized. However, lack-
ing normalization, the improvements are relatively lower.
Besides, simple normalization is also valuable. Since 2

pc+qc

and 2
pc∗qc also expect higher confidences of ELP, a similar

influence may occur through leveraging the normalization
term only. These results demonstrate that regularization and
normalization are valuable in ELP-SR. Simultaneously, the
combinations of both sides introduce a further increase in
performances.

Finally, we also operate ablations for the distillation of
the probability of two classifiers. Remarkable decreases
are shown in Table 6 of both conditions for L1 and L2 re-
gressions. The network should not be optimized to solve
features’ discriminability directly. Distilling can lead the
main classifier to perform similarly to the ELP classifier but
does not encourage the network to be more generalized. If
the main classifier is optimal according to the ELP classi-
fier, the network can ‘pretend’ to achieve discriminative fea-
tures. However, in testing, this ‘cheating’ is useless. Addi-
tionally, we replace the ELP classifier with a memory bank
and update the memory by a momentum-based moving av-
erage. When the momentum is 0.9 and 0.1, the results are
86.1%and 86.5%, respectively. The results show that the
moving average operation helps fine-grained recognition,
but it provides a weaker regularization than the episodically
initialized ELP classifier.

4.4.2 Visualization

To demonstrate the efficacy of our ELP, we present a visual-
ization for the testing accuracy of our ELP based on CUB.
In detail, we train the baseline method, take the features
from the backbone to train ELP, but do not leverage ELP-
SR for network training. Meanwhile, we take our method
training with ELP-SR as the comparison. This is similar to
applying linear probing for every epoch. Since ELP is re-
initialized every two epochs for CUB, to better reveal the
capacity of ELP under different conditions, we plot the ac-
curacy every two epochs. As shown in Fig. 3, unseen fea-
tures in the testing set are remarkably more recognizable.
This indicates that the network with ELP-SR is more gener-
alized and produces more discriminative features. Even for
the simple classifier, the unseen samples represented by the
network are easier to be classified.

5. Conclusion
In this paper, we propose episodic linear probing (ELP)

to estimate the generalization and discriminability of fea-
tures online. By ELP, we propose an ELP-suitable Reg-

Parameter I = 1 I = 2 I = 3 I = 4 I = 5

γ = 1 88.0 88.2 88.2 88.0 87.8
γ = 2 88.0 88.5 88.2 88.0 87.8
γ = 3 87.6 88.8 88.0 88.0 87.6
γ = 4 87.5 88.0 87.8 87.8 87.5

Table 5. Results for different values of I and γ on CUB. I pre-
vents the ELP from overfitting, and γ adjusts the intensity of reg-
ularization.

Formulation D R Top-1 Accuracy

D
R

pc − qc pc + qc 76.82
pc − qc pc ∗ qc 76.75
1− qc pc + qc 76.78
1− qc pc ∗ qc 76.70

D
pc − qc - 76.71
1− qc - 76.60

1
R

- pc + qc 76.25
- pc ∗ qc 76.23

Distillation L1 76.12
L2 76.18

Table 6. Comparison for variations of SR Factor on ImageNet-1K.
Various conditions are presented, including different formulations
of D and R, with or without D and R, and direct distillation of the
main and ELP classifier.
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Figure 3. Curves of testing accuracy only with ELP classifier on
CUB. Compared with our method, We utilize the baseline method
that extracts the features from the backbone, trains ELP with fea-
tures individually but does not leverage ELP-SR for the backbone
training. Features trained with ELP-SR are more discriminative
than the baseline and easier to be classified by simple ELP.

ularization term (ELP-SR) to regularize the models. Our
insights are two-fold. 1). Since the main classifier may be
overfitting and its confidence may not indicate the discrim-
ination of features, the ELP classifier provides additional
regularization for more discriminative features. 2). Imme-
diate suitability is effective in measuring the discrimination
of features. An intuitive hypothesis is that if the features
are highly discriminative, they should be recognizable by
an easily learned linear classifier. Our ELP is episodically
re-initialized, effectively mitigating overfitting and regular-
izing the network towards better linear separability.
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