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Label Independent Memory for Semi-Supervised
Few-shot Video Classification

Linchao Zhu, Yi Yang

Abstract—In this paper, we propose to leverage freely available unlabeled video data to facilitate few-shot video classification. In this
semi-supervised few-shot video classification task, millions of unlabeled data are available for each episode during training. These
videos can be extremely imbalanced, while they have profound visual and motion dynamics. To tackle the semi-supervised few-shot
video classification problem, we make the following contributions. First, we propose a label independent memory (LIM) to cache label
related features, which enables a similarity search over a large set of videos. LIM produces a class prototype for few-shot training. This
prototype is an aggregated embedding for each class, which is more robust to noisy video features. Second, we integrate a
multi-modality compound memory network to capture both RGB and flow information. We propose to store the RGB and flow
representation in two separate memory networks, but they are jointly optimized via a unified loss. In this way, mutual communications
between the two modalities are leveraged to achieve better classification performance. Third, we conduct extensive experiments on the
few-shot Kinetics-100, Something-Something-100 datasets, which validates the effectiveness of leveraging the accessible unlabeled
data for few-shot classification.

Index Terms—Few-shot Video Classification, Semi-supervised Learning, Memory-augmented Neural Networks, Compound Memory
Networks
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1 INTRODUCTION

TO successfully train a deep network, millions of labeled
video examples are required. However, in some real-

world scenarios, it is unrealistic to manually collect large
datasets for a new task. Thus, it gives rise to few-shot
classification, where the goal is to quickly generalize to a
novel task from only a few training examples. Recently,
few-shot classification has attracted considerable research
interests [1], [2], [3], [4], [5], focusing on image classification
using metric-learning [1], [2] and gradient-based optimiza-
tion [4]. In many few-shot problems, few-shot video classi-
fication [6] is another important task, aiming to enable the
agent to quickly learn and understand surroundings from
a few sequencial observations. Understanding the video
content from a few examples is a more challenging task,
however, less attention has been paid to it. Videos have
more complex structures than images, involving temporal
information and more noise, such as camera motion, object
scale and viewpoint variances. Many videos contain hun-
dreds of frames with complex scene dynamics. With this
complexity, it may be difficult to understand the concept in
a video when only a few examples are provided.

Few training examples hinders the model when learning
a discriminative video representation. One of the possible
solutions for few-shot video classification is to leverage a
large amount of freely accessible unlabeled data. When large
amount of video data are introduced for few-shot training,
it is essential to model the unlabeled video distributions
and extract appropriate video representations. This process,
together with the training loss on the few labeled video data
sets, can be difficult to optimize. In [7], Hsu et al. proposed
to train a general embedding function from the unlabeled
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Fig. 1: We leverage off-the-shelf feature extractors trained on
ImageNet to extract frame-level embeddings for unlabeled
videos. The related videos will be selected from a large video
dataset to form an unlabeled set. This unlabeled set will then
be utilized for few-shot training.

data first, to be used as initialization for few-shot training.
The unsupervised training process is not conditional on any
target data, which limits the generalization. It is also difficult
to learn a universal feature extractor from unlabeled data.

As an alternative approach, we leverage an existing off-
the-shelf feature extractor for the unlabeled video data,
to ease the learning difficulties (Fig. 1). Fortunately, the
modern convolutional networks trained on ImageNet show
attractive transferability properties. Instead of learning rep-
resentation from the unlabeled data from scratch, the ex-
isting convolutional models can serve as universal feature
extractors for video frames on novel categories. YouTube-
8M [8] contains millions of videos from various of domains.
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To generate the frame-level representations, the authors sim-
ply extract the Inception-V3 [9] features, where the model is
pre-trained on ImageNet. These features are great sources
of profound visual and motion dynamics. In this paper,
we propose to leverage the massive off-the-shelf video
features for few-shot video classification. However, we do
not use any labeled information to setup more realistic
semi-supervised few-shot settings. In addition to leveraging
unlabeled data for few-shot video classification, we make
the following contributions.

First, a label independent memory (LIM) bank is pro-
posed to cache class specific knowledge. To leverage the
unlabeled data for few-shot video classification, we propose
to assign labels to the unlabeled data. However, instead
of assigning the class label to each individual data point,
we introduce a label independent memory bank to store
the relatedness between the unlabeled data and the target
examples. The label will be assigned to the class prototype,
which is a weighted average of the features in each LIM
bank. In addition, we introduce the read and the write
operations upon LIM. The class prototype can relieve the
noise caused by inaccuracies when selecting of unlabeled
data.

Second, we introduce two separate episodic memory
banks to individually store the RGB information and the
motion information. Instead of storing the RGB and optical
flow representation in the same memory, we introduce two
structures for storing different cues. Based on the proposed
Compound Memory Network (CMN) [6], we introduce a
unified loss to train the embedding function for the target
datasets. Though the two-stream features are stored inde-
pendently, the unified loss will build connections between
the two CMNs, enabling their mutual communication. The
original CMN structure is designed based on the key-value
memory networks [10]. During training, information in each
training episode is gradually accumulated into CMN.

Third, equipped with the above components, we achieve
state-of-the-art performance on the few-shot Kinetics-100
dataset [6]. To avoid overfitting on this dataset, we addi-
tionally collect few-shot Something-Something-100 dataset.
Extensive experiments validates the effectiveness of each
component. With multi-modality CMN, we observe a sig-
nificant performance gain on both datasets. Our work also
allows for future research on the semi-supervised few-shot
video classification problem.

2 RELATED WORK

2.1 Video classification
The success of CNNs in image understanding [11], [12], has
been useful for various video understanding tasks, includ-
ing action recognition [13], action detection [14], video cap-
tioning [15]. Video classification methods have evolved from
using hand-crafted features, e.g., improved dense trajecto-
ries [16], to deep models, e.g., two-stream Convolutional
Neural Networks (ConvNets) [13], [17], 3D ConvNets [18],
two-stream 3D ConvNets [19]. Some research has been
conducted on encoding deep features to a global repre-
sentation. For instance, Arandjelović et al. [20] proposed
a NetVLAD layer for image retrieval and achieved im-
provements over unsupervised VLAD. It is later been used

in [21] and [22] for video data modeling. These VLAD-based
methods focus on video-level feature encoding via adaptive
center assignment. Our multi-saliency embedding function
leverages hidden descriptors and the assignment weights
are learned with attention mechanism. Unsupervised video
pre-training and multi-modal video text pretraining have
been studied in [23], [24], and we mainly focus on semi-
supervised video classification. After the releasing of the
Kinetics dataset [19], more 3D convolutional networks have
been proposed [25], [26]. These efforts have been made to
train a video classification model using large amounts of
video data, however, it would be expensive to collect large
datasets and retrain the network for all novel tasks. The few-
shot video classification task is more realistic in a real-world
scenario, where the model will encounter novel categories
that do not appear in the training process. The networks
should learn to adapt to new tasks.

2.2 Few-shot Representation Learning
Early works from Miller et al. [27], Fei-Fei et al. [28]
and Lake et al. [29] utilized generative models with one-
shot learning. Santoro et al. [30] was the one of the first
works to successfully integrate memory networks to few-
shot learning. Vinyals et al. [1] used metric learning for
few-shot recognition. The network is trained to find the
nearest instance in the support set, then the corresponding
label is retrieved. Snell et al. [2] utilized a prototype repre-
sentation to stabilize the matching performance, and they
used Euclidean distance with their embedding function.
Finn et al. [4] used gradient-based update (SGD) as a meta-
learner to optimize the learner’s parameters. These few-
shot learning methods target at image classification, where
the studies on few-shot video classification are largely ne-
glected. The existing image components cannot be used
directly to model temporal dynamics in videos. Recently,
few-shot video classification [6], [31] has been proposed to
address a more difficult problem, which requires to capture
motion dynamics from a few video clips. In this paper, we
further introduce a promising direction to improve few-shot
video classification accuracy by leveraging freely available
unlabeled data. We dynamically select relevant examples
from unlabeled data. The relevant examples are stored to
a label independent memory for better few-shot video clas-
sification.

2.3 Semi-supervised Few-shot Learning
Semi-supervised learning has achieved great progress in
recent years [32], [33], [34]. These methods usually leverage
unlabeled data to alleviate the need of collecting sufficient
labeled data. Laine et al. [32] proposed a temporal ensem-
bling method to maintain an exponential moving average
of label predictions on each training sample, where the
predictions that are inconsistent with the target will be
penalized. This consistency regularization helps to learn a
better predictor for the unknown labels. Mean Teacher [33]
improves temporal emsembling by leveraging exponential
moving average on convolutional weights instead of label
predictions. Berthelot et al. [34] introduced an effective
MixMatch algorithm that predicts labels for the unlabeled
examples. Later, MixUp [35] is used to mix labeled and
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unlabeled data.
In semi-supervised few-shot image classification, [36] used
well-constructed unlabeled data to update the original pro-
totype, and utilized a soft k-means for cluster center tuning
on the unlabeled data. However, they leveraged unlabeled
data that are specifically given at each episode, and the
unlabeled data usually consist of small number of examples.
Liu et al. [37] tackled few-shot learning in the transductive
setting, which learns to model the distributions of the testing
data and propagates labels from labeled data to unlabeled
data. Li et al. [38] proposed to initialize a self-training model
for cherry-picking examples from noisy labels. In this paper,
we leverage the unlabeled data in the feature space and
focus on selecting related videos for target training. We
exploit a nearest neighbour method to select examples from
unlabeled data. The similarity scores are stored in a label
independent memory to enhance the robustness of label
prediction.

3 SEMI-SUPERVISED FEW-SHOT VIDEO CLASSIFI-
CATION

In this section, we show that CMN can be readily applied
to semi-supervised few-shot video classification. Few-shot
video classification is still a relatively new task. Unlike few-
shot image classification, one of the challenges is for the
model to learn the video dynamics from a few examples.
Given that the model is provided with a few examples, it be-
comes more difficult to recognize objects, as well as motion
changes in high dimensional data, although it is promising
to incorporate large volumes of unlabeled data for few-shot
video classification. In image classification, semi-supervised
few-shot classification has been proposed, where unlabeled
examples are included within each episode [36]. However,
in real-world scenarios, structured unlabeled data are often
difficult to collect. A more common method would be to
enable the model to access all the unlabeled data during
the training process. More recently, Hsu et al. [7] proposed
to learn image embeddings from unlabeled data. In this
unsupervised learning process, the learned network does
not pay attention to the labeled target training examples,
i.e, at the unsupervised meta-learning stage, the model is
unaware of the task to be solved. In this paper, we target
semi-supervised few-shot video learning in a more realistic
scenario.

Typically, few-shot video classification models are
trained on K-shot, N -way episodes [1], [4], [6]. First,
each episode is constructed by sampling a subset
of N classes from Ttrain, where Ttrain is the meta-
training set. Then, the training support set is gener-
ated as S = {(v1, y1), (v2, y2), . . . , (vN×K , yN×K)} con-
taining K examples per class. The query set Q =
{(q1, y′1), (q′2, y′2), . . . , (qT , y′T )} are sampled from the same
class, but are different samples, consisting of meta-training,
meta-validation, and meta-testing splits. There are no vo-
cabulary overlaps between the splits.

In this paper, we consider a different perspective to
define the problem of incorporating unlabeled data. We
leverage the unlabeled data that has been conditioned to
a given task for each episode. Specifically, we denote the
unlabeled dataset as Su. The videos from Su are usually

from a larger domain. The unlabeled set is also available at
the meta-validation and meta-testing stage.

In this section, we introduce our framework for semi-
supervised few-shot video classification. We first illustrate
some preliminary components, i.e., compound memory net-
works. We then introduce a novel, label independent struc-
ture to store class-related information for semi-supervised
learning. After that, we explain the training and evaluation
protocol based on compound memory networks.

3.1 Compound Memory Networks

First, we introduce the multi-saliency embedding function
that learns a fixed-size matrix representation for a variable-
length video sequence. Second, we illustrate the two-layer
key memory structure in compound memory network,
which consists of a constituent key memory and an abstract
key memory. Third, we introduce the reading and writing
operations for compound memory network. Last, training
loss will be explained to optimize our network.

3.1.1 Multi-saliency Embedding Function

In this section, we introduce a multi-saliency embedding
function for video feature learning. The multi-saliency em-
bedding function takes variable lengths video frames as
inputs and produces a fixed-size 2D matrix representation,
which explores the video temporal dynamics and detect the
saliency for each frame with a hidden descriptor. This 2D
matrix representation encodes a sequence of video frames
which will be stored to compound memory networks. [5]
leverages standard convolutional networks or sequence-to-
sequence networks to encode inputs. Our multi-saliency
embedding function is designed for better video feature
learning, and it enables the detection of different salient
parts and aggregates different lengths of videos frames to
produce a fixed-size representation. We denote a video as
P = {p1,p2, . . . ,pm′}, where m′ is the number of video
frames. Each element pi (i = {1, . . . ,m′}) is a frame-
level representation extracted by a ConvNet. We aim to
aggregate a video sequence P into a fixed-size 2D matrix
representation Q, where the representation Q consists of
m stacked hidden descriptors. We denote the fixed-size
representation as Q = {q1,q2, . . . ,qm}. The size of each
descriptor qi (i = {1, . . . ,m}) is dq . Note that the number
of video frames (m′) varies across different videos, but the
number of descriptor (m) is fixed.

Our multi-saliency embedding function (MEF) intro-
duces a hidden variable H = {h1,h2, . . . ,hm} with m
components. Each component hj (j = {1, . . . ,m}) is used
to detect one saliency in a video. Given a video feature pi, a
soft weight aij will be calculated to measure the relevance
between the input pi and the component hj . The hidden
descriptor qj will be the weighted sum over the residual
between P and hj . The MEF function can be formulated by:

ai = softmax(
piH

T√
dq

),

qj =
m′∑
i=1

aij(pi − hj),

(1)
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where softmax is defined as, softmax(e) = exp(ei)∑
i exp(ei)

.
Following the scaled dot-product attention in [39], we use
a dot-product operation to calculate the relevance score
between pi and hj . The relevance score is scaled by 1√

dq

before the softmax function. In this way, the multi-saliency
descriptor Q can be obtained from the original video se-
quence P. We denote this process as Q = MEF(P,H).
Discussion: Multi-hops attention [39], [40] shares the simi-
lar idea by calculating multiple weighted sums over the in-
puts. Our multi-saliency embedding function introduces an
extra hidden variable H to enable the detection of different
salient parts in videos and learn the relation between the
input and hidden descriptors. The multi-saliency embed-
ding function aggregates different lengths of videos frames
and produces a fixed-size representation for subsequent
operations.

3.1.2 Two-layer Key Memory
In this section, we introduce our compound memory net-
work with the novel two-layer key memory structure. Our
compound memory network is one of the Key-Value Mem-
ory Networks [5], consisting of a key memory (K) and a
value memory (V). In [5], the key memory only stores com-
pact vectors, while our constituent key memory and abstract
key memory provide a hierarchical memory structure for
the modeling of complex video dynamics. In compound
memory network, we store visual information in the key
memory, and the value memory saves the label information.
We introduce a two-layer key memory to store 2D video
representations, where the first layer is the constituent key
memory (C) and the second layer is the abstract key memory
(A). In addition, we leverage an age memory (U ) to track the
usage of each memory slot. Thus, the compound memory
module (M) can be represented by the following tuple,

M = ((Cns×nc×cs, Ans×as),Vns×1, Uns×1), (2)

where ns is the memory size, nc is the number of con-
stituent keys, cs is the key size and as is the abstract key
memory size.
Constituent Key Memory. We use multiple stacked con-
stituent vectors to represent a video in constituent key mem-
ory, which provide stronger representation capabilities than
a single vector representation and enable the modeling of
complex video dynamics. In each constituent key memory
slot, we use a multi-saliency descriptor to represent a video.
Given a video P to be stored in constituent key memory,
we can obtain the multi-saliency embedding Q with shape
(m, dq). We set the number of saliency descriptors (m) to
be equal to the size of constituent key (nc). In this way, we
directly save the video representation Q in the constituent
key memory.
Abstract Key Memory. It offers strong representation ca-
pabilities using constituent keys. However, the introduction
of constituent keys hinders the fast retrieval process during
memory reading. To enable a rapid memory reading, we
propose an abstract key memory upon the constituent key
memory. The abstract key memory compresses the represen-
tations cached in the constituent key memory. The abstract
key memory can be seen as a snapshot of the constituent
key memory. The two memory modules contain the same

number of slots, but they represent information at different
levels. The abstract key memory contains more semantic
and abstract visual features, while representations in the
constituent key memory are more informative and finer.

The representation in the abstract key memory can be
obtained as follows. We follow [21], [41], [42] to normal-
ize the matrix and produce a global video representation.
[41] proposed to first perform intra-normalization that `2
normalizes the sum of residuals within a coarse cluster
independently, and second, `2 normalization is used to nor-
malize the flattened global vector. Given a stacked matrix
representation ci (i ∈ {1, . . . , nc }) in each constituent
key memory slot, we first normalize each constituent key
with `2 normalization, i.e., ‖ci‖ = 1. We obtain a new
matrix representation C′ where each component has been
normalized. Second, the normalized matrix representation
C′ is flattened to a vector by concatenating all components.
This vector is then projected to lower dimension space by
a Fully-Connected (FC) layer, producing a more compact
global vector d′. Third, the global video representation is `2-
normalized before storing to the abstract key memory. We
denote the procedure as the normalize function,

ci
′ =

ci
‖ci‖

,

d′ = FC(flatten(C′)),

d =
d′

‖d′‖
,

(3)

where a FC layer is simply a linear transformation
layer, i.e., FC(x) = wx+b, and b is the bias. The compressed
representation d will be saved to the corresponding abstract
key memory. The representations in the abstract key mem-
ory will be dynamically updated when the corresponding
constituent key is altered during memory updates. Each
abstract key memory slot retains a one-to-one mapping to
the constituent key memory slot. Our abstract key memory
will accelerate the memory reading process, while the rep-
resentation capability is maintained in the constituent key
memory.

3.1.3 Reading and Writing Operations
Reading. Given a query vector z = normalize(Q), we
aim to retrieve the relevant memory slots by a nearest
neighbour search over the abstract key memory A. We use
cosine similarity to measure the distance between the query
and the representations in abstract key memory,

sim(z,A[i]) = z · A[i]
‖z‖ · ‖A[i]‖

. (4)

Cosine similarity has been widely used in few-shot learning,
which have been found to be generalizable in many meth-
ods [1], [5], [43]. We select the memory slots that are close to
the query z by,

NN(z, A) = argmaxi(sim(z,A[i])). (5)

The k-nearest slots ordered by decreasing similarity are
returned by,

(n1, . . . , nk) = NNk(z, A), (6)

where n1 is the memory slot that is most similar to the
query. At the inference phase, V[n1] will be our prediction
for query z.
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Writing. We introduce the writing operation when new
information is to be incorporated in memory. We follow [5]
to update the memory, and we extend the memory update
operations by introducing the operations to jointly modify
constituent key memory and abstract key memory. The
abstract key memory will be dynamically updated when
the corresponding constituent key is altered during memory
updates. The new information reflects the relation of a new
query Q = {q1, . . . ,qm} and its corresponding label y.
Q will be written to the constituent key memory, and y
will be updated in the value memory. We do not modify
the memory via backpropagation, but update the memory
with the following rule. First, we locate the memory slot
index to be updated by performing a reading operation
over the abstract key memory, which returns n1 as the
index of the nearest memory slot. Second, we replace the
located memory with the new query information using two
strategies as follows.

When the memory returns the correct label, i.e., V[n1] =
y, we only update the n1 memory slot:

C[n1][i]← qi + C[n1][i], for i = 1, . . .nc,

A[n1]← normalize(C[n1]),
U [n1]← 0.

(7)

Hence, A[n1], U [n1] and C[n1] will be updated, while
V[n1] is unchanged. The new constituent key memory is
generated by averaging each constituent key in C[n1] and
the multi-saliency descriptors Q. When the constituent key
memory is updated, the corresponding abstract key mem-
ory slot A[n1] will be altered. We update the age memory
by setting U [n1] to 0, which indicates that the memory slot
n1 has been recently updated.

When the memory returns a wrong label, i.e.,V[n1] 6=
y, we will incorporate the new information by storing the
(Q, y) pair into a memory slot to reflect the information.
The oldest memory slot with the largest age value in U will
be selected, which has not been updated for a long time. We
obtain the oldest memory index n′ by,

n′ = argmax
i

(U [i] + ri), (8)

where ri is a random number sampled from a uniform
distribution to introduce randomness during memory slot
selection. After obtaining n′, the memory will be updated
by,

C[n′][i]← qi, for i = 1, . . . ,nc,

A[n′]← normalize(C[n′]),
V[n′]← y,U [n′]← 0.

(9)

In this case, V[n′] is also updated with the new label y.

3.1.4 Training Loss
Kaiser et al. [5] used metric learning [44] to optimize the
distances between the positive samples and the negative
samples. We found this ranking loss effective in optimizing
memory weights, and we follow the same loss [5] to enlarge
the query similarity to the positive key and minimize the
similarity to the negative key. We introduce the training loss
for the optimization of learnable weights in the network.
Given a query z and a corresponding ground-truth label
y, we retrieve top-k key-value pairs on memory indices

(n1, . . . , nk) by Eq. 6. Let i-pos be the smallest index
that V[ni-pos] = y and i-neg be the smallest index that
V[ni-neg] 6= y. We train the query vector z to be more similar
to A[ni-pos] than A[ni-neg] with the following ranking loss,

L(z, y,A) = max(α− z · A[ni-pos] + z · A[ni-neg], 0). (10)

The similarity is measured by a cosine distance which
compares the relevance between two vector as Eq. 4. As z
and vectors in A have been `2 normalized, we omit the `2-
norm notation in Eq. 10. The similarity between the query
and the positive key should be larger than the similarity
between the query and the negative key by margin α. The
loss will be 0 when the difference between the two distances
is beyond margin α.

In each episode, We clear the memory values before
any operations are conducted, which initializes all memory
variables to 0. The learnable weights are shared across
different episodes. At the inference phase, we fix the weights
of the network, while the memory module will be updated
with the support set examples.

3.2 Semi-Supervised Few-shot Video Classification
To illustrate the process of leveraging unlabeled data, we
visualize the entire process in Fig. 2. We first introduce how
to sample examples from the set Su, and how to cache the
most related samples to a set of label independent mem-
ory (LIM) banks. We then illustrate how to retrieve class
prototypes from the LIM, which are later utilized together
with the target examples to learn few-shot representation on
compound memory networks.

3.2.1 Video Embedding Functions
We use YouTube-8M as the unlabeled source to facilitate
few-shot training. We do not use any label annotations from
this dataset. To learn the unlabeled video representation,
we use the Inception-V3 network [9] to extract the frame-
level representations, which have been computed by the
dataset authors. The provided features used PCA to reduce
the representation size to 1, 024. Then, the video-level rep-
resentations are obtained by global average pooling.

Given the training examples S =
{(v1, y1), (v2, y2), . . . , (vN×K , yN×K)}, the goal is
to leverage videos from an unlabeled set Su, to
improve generalization of the classifier to recognize
the query examples. The query examples are
Q = {(q1, y′1), (q2, y′2), . . . , (qt, y′T )}, where T is the
number of test examples in each episode. For each task
τ , we first embed the training video i with three different
networks:

x
incept
i = MEF(x

incept
ik ),

x
rgb
i = MEF(x

rgb
ik ),

xflow
i = MEF(xflow

ik ).

(11)

x
incept
ik is the frame-level representation for k-th frame, which

is extracted by the Inception-V3 network. We fix the network
weights during the whole learning process. The same pre-
trained weights are used as the frame-level feature extractor
for YouTube-8M videos. Video-level features are generated
by the MEF function. We denote the obtained video-level
feature as x

incept
i . The purpose of this network is to build
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Fig. 2: Our framework for semi-supervised few-shot video classification. Given training examples and their labels, the
network first finds similar instances from a large-scale unlabeled set. The examples with high similarities will be retrieved.
These examples will then be cached in a label independent memory bank (LIM). This LIM has a key-value structure, where
the key is the feature and the value is the confidence of this feature belonging to a specific label. After several selecting
iterations, the reading operation will generate class prototype from the LIM. In this paper, three networks are used, i.e.,
Inception-V3, ResNet-50, and ResNet-18, which store features of Inception-V3, RGB inputs, and flow inputs, respectively.
The generated class prototype will then be saved to the memory banks.

connections between the unlabeled data and the few-shot
target data, which offers a fixed similarity measurement
function in feature distance comparisons. This also provides
a more stable training process..

x
rgb
ik is the frame-level output from the ResNet-50 net-

work with RGB inputs. Frame-level features are also en-
coded by the MEF function. This network is pre-trained on
ImageNet, and it is updated during the few-shot training
process. The bottom layers are fixed until the res5 block.
The goal of this network is to model the objects, scenes, and
the environments in the target dataset.

xflow
ik denotes the clip-level feature for stacked clip k.

They are extracted from a ResNet-18 network with optical
flow as inputs. Stacked optical flows are fed to the network
as input “images”. In the absence of an effective pre-trained
optical flow model to initialize data from, we choose to use
ResNet-18 as it is relatively shallow and easy to optimize.
The optical features are also be encoded by the MEF function.

For an unlabeled video uj in Su, we extract the video-
level representation by,

u
incept
j = MEF(u

incept
jk ). (12)

Thus, xincept
i and u

incept
j are parameterized by the same

Inception-V3 network. We fix all the parameters for feature
extraction of unlabeled data, which bypasses additional
learning of its representation. If we train the feature extrac-
tion network on set Su, it could introduce more difficulties

when modeling the data distribution on a large dataset. The
labels are unknown on the large unlabeled dataset. Thus, we
choose to fix the feature extraction network for Su to ease
the learning difficulties.

To summarize, we now obtain the video-level repre-
sentations for both unlabeled set and the training set. For
an unlabeled video, a video-level representation is used to
compare it with the target training examples. In addition,
the target training examples are encoded with a ResNet-50
and a ResNet-18 network, which are optimized during the
training process to better represent the target dataset.

3.2.2 Unlabeled Data Selection

To leverage the unlabeled data for few-shot classification,
one of the possible solutions is to assign a pseudo label
to the unlabeled data. However, assigning a specific label
to each data point can possibly introduce noises to the
classifier. In [2], the prototypical network is proposed to
learn to compare among prototype representations of each
class. Our proposed label independent memory cache is dif-
ferent from [36] and [2]. We first select the related unlabeled
examples by comparing the distances between the query
and the unlabeled data. Specifically, we randomly sample
nu examples from the set Su. We denote the features of
the sampled videos as u1,u2, . . . ,unu

. These examples can
be regarded as an unlabeled “support” set to the training
examples. Each training pair can be denoted as (xincept, xrgb,
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Algorithm 1 The pipeline of our semi-supervised few-shot
video classification.
Input:
v, y: training video and its label
q, y′: query video and its label
U : Unlabeled video set
nall: the number of videos to be sampled in Su
Ik: Label independent memory for class k
M incept, M rgb, Mflow: Compound Memory Networks

Output: The loss Lall for each iteration.
xincept: MEF encoded Inception-V3 feature for video v
xrgb: MEF encoded ResNet-50 feature for video v
xflow: MEF encoded ResNet-18 feature for video v
while total sampled videos ≤ nall do
u1, u2, . . . , unu ← sample nu videos from Su
u

incept
1 ,u

incept
2 , . . . ,u

incept
nu ← MEF encoded Inception-V3

feature for each video
uj , αj ← NN(xincept, uincept

∗ ) {return top-k examples
that are most similar to xincept}
Write uj , αj to Iy

end while
Read eincept, ergb, eflow from Iy′

Using (eincept, xincept), (ergb, xrgb), (eflow, xflow) to update
Mincept,Mrgb,Mflow, respectively
Calculate Lall using Equation 17

xflow, y). It first performs nearest neighbour search on the
sampled unlabeled examples using xincept,

αj =
xincept · uj

||xincept|| · ||uj ||
,

NN(xincept,u) = argmaxjαj ,

(13)

where cosine similarity is used to measure the relevance
between the labeled query and the unlabeled examples.

After a nearest neighbour search, the top-k features
and their similarities to the query xincept will be returned.
The similarity αj will be regarded as a confidence score
that indicates uj belonging to label y. A larger αj means
the probability of uj belonging to y is higher. Note that
conducting a nearest neighbour search on a large number of
unlabeled examples might lead to the out of memory error.
We divide the unlabeled data into batches for the query to
compare each batch individually, where the most similar
unlabeled instances will be cached in the label independent
memory. To be specific, the label independent memory will
store the prediction pair (uj , αj , y).

3.2.3 Label Independent Memory
The generated pair (uj , αj , y) will be cached in the LIM

bank. For a K-shot task, K LIM banks will be used to store
examples for K different classes. Each class k has a corre-
sponding memory bank Ik. Each memory bank has its key
and value, where the keys are the feature representation u
from the unlabeled dataset, and the value is the confidence
α of the feature belonging to class y. Usually, a reading and a
writing operation are applied to a typical memory network.
These operations are explained as follows.
Writing. In the writing operation, we first locate the y-th
memory bank where the (uj , αj , y) pair needs to be written

to. We denote the target memory bank as Iy . Each I has
a fixed number of slots nc, and a position variable p is
used to record the number of valid memory slots that have
been used. The memory slots are sorted using the value
part of the memory, where the higher values are ordered
first, followed by lower values. The new (uj , αj) pairs will
be inserted to the memory to keep the memory ordered.
Specifically, the new feature will be written to position p via

Ik
p ← uj , Iv

p ← αj , (14)

where Ik
p is the key memory slot to save the features at

position p, and Iv
p is the value memory slot to save the

confidence score at position p. After the write operation, p
is updated by p = max(p+ 1, nc).
Reading. We introduce the reading operation of the mem-
ory. Each class has a corresponding memory bank. The
memory bank stores visual examples that can be searched
by the queries in the same class. These examples can be
used as labeled noisy data for few-shot training. The reading
operation is applied on each memory bank, and the fetched
data becomes the prototype for the corresponding category.
The prototype for each class is calculated by the weighted
average of the features in the valid slots,

eincept
c =

∑p
i=1 I

v
i · Ik

i∑p
i=1 I

v
i

, (15)

where e
incept
c will be the prototype for class c.

To generate the prototype of class c for different net-
works, i.e., ResNet-50 and ResNet-18, we add another pro-
jection network which attempts to map the Inception-V3
feature to the other two features. Specifically, we use a three-
layer multilayer perceptron (MLP), which consists of the
structue of FC-ReLU-Dropout-FC-ReLU-Dropout-FC. The
prototype of class c is represented by,

ergb
c =

∑p
i=1 I

v
i ·MLPrgb(I

k
i )∑p

i=1 I
v
i

,

eflow
c =

∑p
i=1 I

v
i ·MLPflow(I

k
i )∑p

i=1 I
v
i

.

(16)

Thus, three different prototypes are obtained for each class
c, which are e

incept
c , ergb

c , and eflow
c .

Training. In semi-supervised training, we have two inputs:
one is the labeled support examples and the other is the class
prototype learned from the labeled independent memory
bank. We have three types of networks, and we propose
three CMNs, denoted as Mincept, Mrgb, and Mflow, respec-
tively. The inputs to each CMN are (eincept

y , xincept
i ), (ergb

y ,
x

rgb
i ), and (eflow

y , xflow
i ). The memory will be updated inde-

pendently, using both x∗i and e∗y . Once updated, features
from the unlabeled data set become more similar to features
in the labeled target datasets.

The final training ranking loss is formulated by,

Lall = L(zincept, y,Mincept) + L(zrgb, y,Mrgb)

+ L(zflow, y,Mflow),
(17)

where L is defined in Eq. 10, z is the query and y is the
label.

At the test stage, we evaluate two cases of unlabeled
data. In the first case, the unlabeled data are available, while
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in the second case, the unlabeled data are inaccessible. We
expect the more efficient embedding networks of ResNet-
50 and ResNet-18 will be learned when training with large
amount of unlabeled data. We illustrate the training details
of our whole framework in Algorithm 1.

4 EXPERIMENTS

4.1 Datasets

We collected two datasets for few-shot video classification
evaluation, which have been released for future research.
In our collected “Kinetics-100”, we used videos from the
recently released Kinetics dataset [45], which consists of
400 categories and 306,245 videos, covering videos from
a wide range of actions and events, e.g., “dribbling bas-
ketball”, “robot dancing”, “shaking hands”, and “play-
ing violin”. We randomly selected 100 classes from the
Kinetics dataset, each of which contains 100 examples.
We additionally collected “Something-Something-100” [31]
on Something-Something V2 [46]. Similar to Kinetics-100,
we selected 100 classes from Something-Something V2,
where each category has 100 examples. The 100 classes
were split into 64, 12 and 24 non-overlapping classes
to use as the meta-training set, meta-validation set and
meta-testing set, respectively. The splits can be found in
https://github.com/ffmpbgrnn/CMN.

We used YouTube-8M v1 as the source of unlabeled
video data. The YouTube-8M [8] dataset is imbalanced, with
some categories having over 50K positive examples, while
other categories have only 100 positive examples. YouTube-
8M consists of around 8 million videos, with total length of
500K hours. The average length of the videos in the dataset
is 230 seconds. This dataset provides profound visual and
motion dynamics that can be readily used.

4.2 Implementation Details

In an n-way, k-shot problem, we randomly sampled n
classes. Each class has k examples, while an additional
unlabeled example belonging to one of the n classes is used
for testing. Thus each episode has nk + 1 examples. We
calculated the mean accuracy by randomly sampling 20,000
episodes in all experiments.

For ResNet-50 and ResNet-18, we followed the standard
image preprocessing procedure in [47], [48], whereby the
image was first rescaled by resizing the short side to 256 and
a 224×224 region was randomly cropped from the image.
We cropped the central region during the inference phase.
For Inception-V3, we resize the input images to 299×299
before forwarding the inputs to the network [9].

We kept the default network parameters for training. The
weight decay is set to 1× 10−4. For training ResNet-18, we
take 10 stacked optical flow images as inputs to the network.
ResNet-18 is also pre-trained on ImageNet.

We optimized our model with Adam [49] and fixed the
learning rate to 1.0 × 10−4. The margin α was set to 0.5 in
all experiments. During memory slot selection, the random
variable ri is introduced to improve model robustness. ri
is sampled from a uniform distribution in the range [-8.0,
8.0). We tuned the hyper-parameters on the meta-validation
set, and stopped the training process when the accuracy on

the meta-validation set began to decrease. The model was
implemented with the TensorFlow framework [50].

The LIM memory size was set to 512. The batch size was
16. At each iteration of unlabeled video sampling, we use
500 videos. Thus, ten iterations are needed to iterate over
5,000 videos. The memory size for CMN is 1,024. The model
is implemented by TensorFlow [50].

4.3 Evaluation on Few-shot Video Classification

We first present the results on supervised few-shot video
classification, where no external data are utilized.

4.3.1 Comparisons to Baselines
We compare our model with several baselines. We report
1-shot, 2-shot, 3-shot, 4-shot and 5-shot results on the 5-
way classification task. In the first baseline, we utilize all
training data to pre-train the ResNet-50 network. At the
testing stage, we fine-tune the network for each episode.
The network is initialized with the pre-trained weights up
to the last layer. The weights in the last layer is randomly
initialized. We test the performance with different inputs.
For “RGB w/o mem”, we use RGB frames as inputs to
train the network. For “Flow w/o mem”, stack flows images
are stacked as inputs to the network. To encode videos
with a more sophisticated embedding function upon the
frame-level features, we use an LSTM to aggregate temporal
dynamics in each video. The LSTM takes the RGB features
as inputs and is fine-tuned for each episode. We denote this
baseline as “LSTM (RGB) w/o mem”. Another baseline is
a nearest neighbour baseline (“Nearest-finetune”). First, we
finetune the ResNet-50 network to classify all classes in the
meta-training set. Next, we feed each frame as the input
image, and the video-level label is used as the label for each
frame. We initialize the weights of the ResNet-50 network
with the ImageNet pre-trained model. We train the network
via stochastic gradient descent (SGD) with momentum 0.9.
We set the initial learning rate to 0.01. We decrease the
learning rate by 0.1 every 10 epochs. The batch size is 128.
During inference, we feed the video frames to the finetuned
ResNet-50 network and extract the activations from the
last layer before final classification. We average the frame-
level features and obtain a video-level representation with a
dimension of 2,048 dimension. Furthermore, we apply a `2
normalization before nearest neighbour search.

In the next baseline (“Nearest-pretrain”), we do not fine-
tune the ResNet-50 network on the meta-training dataset,
but directly utilize the pre-trained weights without mod-
ification. We embed the video with the same procedure
in “Nearest-finetune”, and then apply nearest neighbour
search.

We also show the result of the Matching Network [1]
(“MatchingNet”) on this dataset, which achieves state-of-
the-art performance on the few-shot image classification
task. We implement the Matching Network algorithms our-
selves. First, we feed the frames to a ResNet-50 network
without fine-tuning. We average frame-level features to ob-
tain a video-level feature. Then, we use the fully-conditional
embedding (FCE) function proposed in [1] to embed the
training examples. The FCE uses a bidirectional-LSTM and
each training example is a function of all the other examples.

https://github.com/ffmpbgrnn/CMN
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TABLE 1: 5-way few-shot video classification on the meta-testing set of Kinetics-100 and Something-Something-100. The
numbers are reported in percentages. Our CMN achieves best results.

Kinetics-100 Something-Something-100
Model 1-shot 2-shot 3-shot 4-shot 5-shot 1-shot 2-shot 3-shot 4-shot 5-shot
RGB w/o mem 28.7 36.8 42.6 46.2 48.6 20.0 25.3 29.2 30.9 33.6
Flow w/o mem 24.4 27.3 29.8 32.0 33.1 21.2 26.0 30.1 31.8 33.8
LSTM (RGB) w/o mem 28.9 37.5 43.3 47.1 49.0 19.8 24.9 28.6 30.6 32.5
Nearest-finetune 48.2 55.5 59.1 61.0 62.6 27.5 32.0 35.9 37.8 41.0
Nearest-pretrain 51.1 60.4 64.8 67.1 68.9 28.1 33.3 37.2 39.2 43.8
MatchingNet [1] 53.3 64.3 69.2 71.8 74.6 31.3 35.9 39.8 40.5 45.5
MAML [4] 54.2 65.5 70.0 72.1 75.3 30.9 35.1 38.6 40.0 41.9
Plain CMN [5] 57.3 67.5 72.5 74.7 76.0 33.4 38.9 42.5 44.0 46.5
LSTM-emb 57.6 67.9 72.8 74.8 76.2 33.0 38.5 41.8 43.8 46.2
CMN 60.5 70.0 75.6 77.3 78.9 36.2 42.1 44.6 47.0 48.8

TABLE 2: Comparisons between different memory sizes on
5-way few-shot video classification.

Model 1-shot 2-shot 3-shot 4-shot 5-shot
Mem-64 52.0 61.9 66.5 69.4 71.2
Mem-128 53.4 63.7 68.9 71.5 73.5
Mem-512 55.1 65.3 70.1 72.0 74.2
Mem-2048 55.0 65.0 69.7 72.4 74.1

TABLE 3: Comparisons between different numbers of multi-
saliency descriptors on 5-way few-shot video classification.

Model 1-shot 2-shot 3-shot 4-shot 5-shot
Desc-1 53.7 63.5 68.3 70.9 73.3
Desc-5 55.1 65.3 70.1 72.0 74.2
Desc-10 53.2 62.9 68.2 70.0 72.3

To train MAML [4], we average the frame-level features and
follow the default hyper-parameters in [4].

In another baseline “Plain CMN”, we remove the con-
stituent key memory from the model and use a video-level
vector as video representation. We replace our embedding
module with an LSTM function, while keeping the other
settings the same. We denote this baseline as “LSTM-emb”.
We conduct this baseline to show the effectiveness of our
compound memory network structure.

The results in Table 1 show our CMN improves the base-
lines in all shots. We observe that fine-tuning the ResNet-
50 network on the meta-training set does not improve the
few-shot video classification performance, but significantly
harms performance. As there are no overlapping classes
between the meta-training set and the meta-testing set, it
is very likely that the model will overfit the meta-training
set. Our CMN structure also outperforms the Matching
Networks by more than 4% across all shots. Furthermore,
our CMN structure outperforms the “Plain CMN”, which
demonstrates the strong representation capability of the
constituent key memory. An improvement of about 10% is
obtained between the 1-shot setting and the 2-shot setting,
by only adding one example per class. The relative improve-
ment decreases when more examples are added, e.g., the
improvement from 3-shot to 4-shot is only 1.7%. This shows
that one-shot classification is still a difficult problem which
can be further improved in the future.

TABLE 4: Comparisons between different ways few-shot
video classification.

Model 1-shot 2-shot 3-shot 4-shot 5-shot
5-way 55.0 65.0 69.7 72.4 74.1
6-way 51.7 61.8 66.4 69.3 71.2
7-way 49.5 59.6 64.3 67.1 68.9
8-way 46.0 56.1 61.0 64.0 65.8

Fig. 3: Comparing different numbers of unlabeled videos for
training. For example, when we use 5,000:1,000, it means
5,000 unlabeled videos are used for training, and 1,000
videos are used for inference.

4.3.2 Ablation Study

We perform ablation experiments to explain our selections
for the final model on Kinetics-100. The default setting is
the 5-way few-shot classification. We show the classification
performance of different memory sizes in Table 2. The
results of different numbers of constituent keys are shown
in Table 3. We also report the results of other few-shot video
classification tasks with different numbers of categories. We
report the results on the meta-validation set, and choose
only 10 frames during evaluation.
Memory size. The results of different memory sizes are
shown in Table 2. When the memory has a small number of
slots, the performance is worse because some information
has to be wiped out as new data arrives. A memory size
of 512 achieves the best results. Increasing the memory size
does not improve performance when the memory is large
enough to record all the information.
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TABLE 5: 5-way semi-supervised few-shot video classification on the meta-testing set of Kinetics-100 and Something-
Something-100. “Incept” denotes the features are extracted by Inception-V3.

Kinetics-100 Something-Something-100
Model 1-shot 2-shot 3-shot 4-shot 5-shot 1-shot 2-shot 3-shot 4-shot 5-shot
CMN w/o external data 60.5 70.0 75.6 77.3 78.9 36.2 42.1 44.6 47.0 48.8
DeepCluster CACTUs-MAML (Incept) [7] 65.1 72.8 76.5 77.9 79.5 37.9 44.5 45.9 47.8 49.9
DeepCluster CACTUs-ProtoNets (Incept) [7] 66.9 73.2 77.0 78.1 79.9 38.4 44.8 46.1 48.0 50.1
LIM-Incept (Ours) 69.8 75.9 78.3 80.4 82.6 41.1 46.9 48.0 51.5 53.0
LIM-3 modalities (Ours) 73.3 78.3 80.8 82.4 84.0 44.0 49.8 51.3 53.9 55.1

TABLE 6: Comparing our model with different modalities. We show that using optical flow information is important to
learn a more power video representation.

Model 1-shot 2-shot 3-shot 4-shot 5-shot
LIM-Incept 69.8 75.9 78.3 80.4 82.6
LIM-Incept-ResNet18-Flow 72.1 77.4 79.6 81.8 83.2
LIM (full) 73.3 78.3 80.8 82.4 84.0

The number of multi-saliency descriptors. The results in
Table 3 show that multi-saliency descriptors with stronger
representation capability obtain better performance than
a single descriptor. The performance decreases when too
many descriptors are used, because more parameters are
introduced in the network.
N -way classification. In all previous experiments, evalu-
ations were conducted on the 5-way classification setting.
n-way classification with larger n is a similar task to 5-way
classification, but it can be more difficult. As can be seen in
Table 4, the performance decreases when n increases.

4.4 Semi-supervised Few-shot Video Classification Re-
sults
4.4.1 Comparisons to Baselines
We compare our results on semi-supervised few-shot video
classification. The results on Kinetics-100 and Something-
Something-100 are shown in Table 5. We use the Inception-
V3, ResNet-50 and ResNet-18 networks in this setting. The
results are reported when 5,000 unlabeled videos are pre-
sented at each episode during training. The same amount of
unlabeled videos are available during inference. As can be
seen, it is beneficial to leverage unlabeled data for few-shot
video classification. For 5-way, 1-shot video classification,
LIM-Incept outperforms CMN [6] by 9.3%. For 5-way, 5-
shot video classification, LIM outperforms CMN 3.7%. It
shows the unlabeled data are more useful when the number
of training video are quite limited. The results indicate
that when there are limited training data, it is beneficial
to improve the model with more unlabeled videos. Our
model learns to measure the distances between the target
set and the unlabeled data. We also compared our results
to [7], where the unlabeled examples are first used for clus-
tering. Note that our LIM-Incept outperforms DeepClus-
ter, CACTUs-MAML and DeepCluster CACTUs-ProtoNets
with a clear margin. We train CACTUs on YouTube-8M, and
then tune it on the meta-training set. Our multiple banks
implementation further improves LIM by leveraging optical
flow information. In the next section, we will study several

important aspects of our model, including the effectiveness
of different modalities, and the number of unlabeled videos
used for each episode. Our results indicate that it is effective
to leverage motion cues for video classification.

We show the confusion matrix for semi-supervised few-
shot learning on both Kinetics-100 (Fig. 4) and Something-
Something-100 (Fig. 5). The confusion matrices show that
the Something-Something-100 dataset is more challenging
than Kinetics-100. For example, “Putting something upright
on the table” can be easily confused with “Unfolding some-
thing”, and “Scooping something up with something” can
be easily confused with “Putting something on the edge of
something”.

4.4.2 Ablation Study

The ablation studies on semi-supervised few-shot classifica-
tion is conducted on Kinetics-100.
Modality. We study the benefit of introducing multiple
modalities for few-shot learning. In previous studies [6],
only RGB frames are used for few-shot classification. We
have shown the benefits of using three different networks
in our framework. We now explicitly show that flow infor-
mation is beneficial to the whole framework. The results
are shown in Table 6. As can be seen, when ResNet-18 is
introduced in the framework (LIM-Incept-ResNet18-Flow
v.s LIM-Incept), substantial improvements are obtained for
all shots experiments. Even though the optical flow infor-
mation is trained using a shallow network, i.e., ResNet-18,
its information is vital to the final results. Motion informa-
tion has been found to be important in action recognition
tasks [13]. In this paper, we first leverage motion infor-
mation under the few-shot video classification setting. The
results also show that motion information can be possibly
be learned from only a few examples. Note that in our
framework, we did not directly model motion information
at the unlabeled dataset, which could be too difficult to
learn. Instead, we use the Inception-V3 feature to generate
the optical flow to be stored in the memory. Thus, it shows
the possibly of learning a flow network that can infer flow
information from static RGB cues. This can significantly
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Fig. 4: Confusion matrix for semi-supervised few-shot video
classification on Kinetics-100.

Fig. 5: Confusion matrix for semi-supervised few-shot video
classification on Something-Something-100.

TABLE 7: Comparisons of unlabeled data from Kinetics and
from YouTube-8M. We do not use any label information
from both datasets. The results indicate that the similarity
between the source domain and the target domain will affect
the classification performance.

Model 1-shot 2-shot 3-shot 4-shot 5-shot
LIM (Kinetics) 70.5 76.8 79.0 81.2 83.3
LIM (YouTube-8M) 69.8 75.9 78.3 80.4 82.6

reduce the cost of extracting optical flow using hand-crafted
algorithms.

Number of unlabeled videos. We study how the per-
formance changes when we leverage different number of
unlabeled videos during training and inference. Note that
during inference stage, it is not necessary to use unlabeled
data in our framework, while the support training set can
also be saved to CMN for query inference. However, we
would like to see how the performance changes when we
have a different number of unlabeled videos during training
and inference. The results are shown in Fig. 3. We compare
the models under different settings. We denote the number
of unlabeled videos in training as a, and the number of un-
labeled videos in inference as b. We compare different a : b
combinations. Specifically, we evaluate a = 500, a = 5K ,
and a = 50K . As can be seen, with only a few unlabeled
examples, e.g., a = 500, the performance is the worst. This
poor performance can be due to the large variances in the
sampled 500 examples, which may be totally unrelated to
the target set. When no unlabeled videos are used (0:0), the
task degenerates to few-shot video classification, where only
labeled images are written into Mincept and no unlabeled
information will be written to the memory. The results
clearly show that our LIM outperforms the baseline with
a large margin. We find that a = 5K is a good hyper-
parameter when the source dataset is YouTube-8M. When

we have more unlabeled videos, the performance saturates.
It shows that although the unlabeled videos are beneficial to
the target data, the improvements have a limit. The source
data and the targets are from different distributions, where
the domain gap can also be difficult to overcome. We did
not attempt a ≥ 50K , as it is time-consuming to sample
50K examples for a single episode training.

Now we discuss the behaviours of b. As can be seen,
when b = 0, the network can also learn to generalize. A
larger b will produce a better performance, however, when
we increase b further (a : b = 5K : 10K), the performance
also saturates. This again indicates that increasing the num-
ber of unlabeled data for each episode not always helps the
performance.
Different source dataset. We now demonstrate how the per-
formance changes when we use videos from Kinetics that
contain different categories to our Kinetics-100 dataset. Note
that we only use the raw videos, and no label information
is used. We aim to see how the source dataset will affect the
performance. The results are shown in Table 7. Note that us-
ing videos from Kinetics will improve the performance. This
result is not surprising, as there are similarities between our
100 classes and the remaining 300 classes. Although some
categories are of different labels, there could be similarities
between them. However, using YouTube-8M is a more gen-
eral choice for video classification. It is common that we are
not aware of the distribution of the target dataset. We believe
if the targets dataset is changed to another one, YouTube-
8M could possibly still benefit the few-shot training, as it
contains large vocabulary and includes videos from many
different domains.

4.5 Discussion

Speed Comparisons We compare the training speed and
testing speed of our LIM and other baselines. We evaluate
the comparison in the 1-shot setting. The results are shown
in Table 8. We report the speed of both few-shot video
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TABLE 8: Speed comparisons in few-shot video classification. The time is reported in hours. For the time cost of training,
we report the total training time. For the testing time cost, we report the sum of 20,000 episodes.

Model Semi 1-shot acc Training Testing
RGB w/o mem 7 28.7 2.3 0.16

LSTM (RGB) w/o mem 7 28.9 3.2 0.19
Nearest-pretrain 7 51.1 0.0 0.08
MatchingNet [1] 7 53.3 5.8 0.14

MAML [4] 7 54.2 10.6 0.47
Plain CMN [5] 7 57.3 6.3 0.17

LSTM-emb 7 57.6 7.1 0.20
CMN 7 60.5 8.4 0.25

DeepCluster CACTUs-MAML (Incept) X 65.1 17.9 0.71
DeepCluster CACTUs-ProtoNets (Incept) X 66.9 14.3 0.38

LIM-Incept (Ours) X 69.8 15.7 0.34
LIM-3 modalities (Ours) X 73.3 20.8 0.67

classification methods and semi-supervised few-shot video
classification methods. We observe that the training time of
MAML is higher than the other baselines, and our “LIM-
Incept” achieves strong performance while the training cost
is relatively low. “Nearest-pretrain” does not need to train
a model. It only performs nearest neighbour search during
testing. Note that “LIM-3 modalitites” is more expensive
compared to other methods as it utilizes optical flow in-
formation. Future research studies can be conducted on
improving LIM with fewer modalities but the accuracy is
maintained.
Failed Attempts. In this section, we list a few methods
we tried but do not work in our preliminary experiments.
First, the training fails when the backbone for feature ex-
traction of unlabeled images is not fixed. We observe that
the training collapses when we tune Inception-V3 during
semi-supervised few-shot learning. It might because that the
Inception-V3 model is biased towards learning the video
features from the large amount of unlabeled data. This
might lead to collapsed few-shot training process. Second,
we tried to generate pseudo labels for the unlabeled data
using a specific model trained on each episode. The gener-
ated pseduo labels are then used to finetune the backbone.
The pseudo label generation process is not so accurate that
the subsequent finetuning performance degenerates. The
“Nearest-finetune” baseline in 1-shot setting on Kinetics-
100 is 48.2%. When unlabeled data are used to finetune the
backbone, the accuracy becomes 41.4% which is significantly
worse than the baseline. Third, we tried to incorporate
the unlabeled data by a mixup operation [35]. The mixup
operation mixes the unlabeled and labeled data. In 1-shot
setting, we only have 5 examples per episode, while the
number of unlabeled examples is 5,000. When mixup is
used in 1-shot setting on Kinetics-100, the accuracy is 57.4%
that is 12.4% worse than our LIM (69.8%). This method
fails because the large ratio (1,000:1) between the unlabeled
examples and labeled examples, making it difficult to mix
the labeled data with the unlabeled data.

5 CONCLUSION

In this paper, we have proposed a compound memory net-
work for few-shot video classification. This module stores
matrix representations, which can be easily retrieved and
updated in an efficient way. Additionally, we study the

effectiveness of introducing unlabeled videos for semi-
supervised few-shot video classification. We propose a
novel Label Independent Memory to cache the class related
examples. The returned class prototype is beneficial to learn
a more stable embedding function. We also leverage multi-
modal memory banks to further improve the representation
power of the memory banks. Our experimental results vali-
date that incorporating optical flow information is beneficial
for few-shot video classification. This work provides more
opportunities to leverage external knowledge for better
generalization, even if the external data is unlabeled. For
future studies, we would like to explore more efficient
search algorithms that can accelerate the nearest neighbour
search. We will explore more effective methods to leverage
the temporal information that is unique in videos for few-
shot video classification.

REFERENCES

[1] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching
networks for one shot learning,” in NIPS, 2016.

[2] J. Snell, K. Swersky, and R. S. Zemel, “Prototypical networks for
few-shot learning,” in NIPS, 2017.

[3] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M.
Hospedales, “Learning to compare: Relation network for few-shot
learning,” in CVPR, 2018, pp. 1199–1208.

[4] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in ICML, 2017.

[5] Ł. Kaiser, O. Nachum, A. Roy, and S. Bengio, “Learning to remem-
ber rare events,” in ICLR, 2017.

[6] L. Zhu and Y. Yang, “Compound memory networks for few-shot
video classification,” in ECCV, 2018.

[7] K. Hsu, S. Levine, and C. Finn, “Unsupervised learning via meta-
learning,” arXiv preprint arXiv:1810.02334, 2018.

[8] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici,
B. Varadarajan, and S. Vijayanarasimhan, “Youtube-8m: A
large-scale video classification benchmark,” arXiv preprint
arXiv:1609.08675, 2016.

[9] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Re-
thinking the inception architecture for computer vision,” in CVPR,
2016.

[10] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” in ICLR,
2015.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in NIPS, 2012.

[12] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in ICLR, 2015.

[13] ——, “Two-stream convolutional networks for action recognition
in videos,” in NIPS, 2014.

[14] S. Yeung, O. Russakovsky, N. Jin, M. Andriluka, G. Mori, and
L. Fei-Fei, “Every moment counts: Dense detailed labeling of
actions in complex videos,” IJCV, 2018.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[15] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell,
and K. Saenko, “Sequence to sequence-video to text,” in ICCV,
2015.

[16] H. Wang and C. Schmid, “Action recognition with improved
trajectories,” in ICCV, 2013.

[17] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and
L. Van Gool, “Temporal segment networks: Towards good prac-
tices for deep action recognition,” in ECCV, 2016.

[18] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learn-
ing spatiotemporal features with 3d convolutional networks,” in
ICCV, 2015.

[19] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a
new model and the kinetics dataset,” in CVPR, 2017.

[20] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic,
“Netvlad: Cnn architecture for weakly supervised place recogni-
tion,” in CVPR, 2016.

[21] R. Girdhar, D. Ramanan, A. Gupta, J. Sivic, and B. Russell, “Ac-
tionvlad: Learning spatio-temporal aggregation for action classifi-
cation,” in CVPR, 2017.

[22] A. Miech, I. Laptev, and J. Sivic, “Learnable pooling with context
gating for video classification,” arXiv preprint arXiv:1706.06905,
2017.

[23] L. Zhu, Z. Xu, and Y. Yang, “Bidirectional multirate reconstruction
for temporal modeling in videos,” in CVPR, 2017.

[24] L. Zhu and Y. Yang, “Actbert: Learning global-local video-text
representations,” in CVPR, 2020.

[25] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri, “A
closer look at spatiotemporal convolutions for action recognition,”
in CVPR, 2018.

[26] S. Xie, C. Sun, J. Huang, Z. Tu, and K. Murphy, “Rethinking spa-
tiotemporal feature learning: Speed-accuracy trade-offs in video
classification,” in ECCV, 2018.

[27] E. G. Miller, N. E. Matsakis, and P. A. Viola, “Learning from one
example through shared densities on transforms,” in CVPR, 2000.

[28] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object
categories,” TPAMI, vol. 28, no. 4, pp. 594–611, 2006.

[29] B. Lake, R. Salakhutdinov, J. Gross, and J. Tenenbaum, “One shot
learning of simple visual concepts,” in CogSci, 2011.

[30] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap,
“Meta-learning with memory-augmented neural networks,” in
ICML, 2016.

[31] K. Cao, J. Ji, Z. Cao, C.-Y. Chang, and J. C. Niebles, “Few-
shot video classification via temporal alignment,” arXiv preprint
arXiv:1906.11415, 2019.

[32] S. Laine and T. Aila, “Temporal ensembling for semi-supervised
learning,” arXiv preprint arXiv:1610.02242, 2016.

[33] A. Tarvainen and H. Valpola, “Mean teachers are better role mod-
els: Weight-averaged consistency targets improve semi-supervised
deep learning results,” in NeurIPS, 2017.

[34] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and
C. A. Raffel, “Mixmatch: A holistic approach to semi-supervised
learning,” in NeurIPS, 2019.

[35] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,
“mixup: Beyond empirical risk minimization,” arXiv preprint
arXiv:1710.09412, 2017.

[36] M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J. B. Tenen-
baum, H. Larochelle, and R. S. Zemel, “Meta-learning for semi-
supervised few-shot classification,” in ICLR, 2018.

[37] Y. Liu, J. Lee, M. Park, S. Kim, and Y. Yang, “Transduc-
tive propagation network for few-shot learning,” arXiv preprint
arXiv:1805.10002, 2018.

[38] X. Li, Q. Sun, Y. Liu, Q. Zhou, S. Zheng, T.-S. Chua, and B. Schiele,
“Learning to self-train for semi-supervised few-shot classifica-
tion,” in NeurIPS, 2019.

[39] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
in NIPS, 2017.

[40] Z. Lin, M. Feng, C. N. d. Santos, M. Yu, B. Xiang, B. Zhou, and
Y. Bengio, “A structured self-attentive sentence embedding,” in
ICLR, 2017.

[41] R. Arandjelovic and A. Zisserman, “All about vlad,” in CVPR,
2013.

[42] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local
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