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Abstract

Text-video retrieval is a challenging task that aims to
search relevant video contents based on natural language
descriptions. The key to this problem is to measure text-
video similarities in a joint embedding space. However,
most existing methods only consider the global cross-modal
similarity and overlook the local details. Some works in-
corporate the local comparisons through cross-modal local
matching and reasoning. These complex operations intro-
duce tremendous computation. In this paper, we design an
efficient global-local alignment method. The multi-modal
video sequences and text features are adaptively aggregated
with a set of shared semantic centers. The local cross-
modal similarities are computed between the video feature
and text feature within the same center. This design enables
the meticulous local comparison and reduces the computa-
tional cost of the interaction between each text-video pair.
Moreover, a global alignment method is proposed to pro-
vide a global cross-modal measurement that is complemen-
tary to the local perspective. The global aggregated visual
features also provide additional supervision, which is indis-
pensable to the optimization of the learnable semantic cen-
ters. We achieve consistent improvements on three standard
text-video retrieval benchmarks and outperform the state-
of-the-art by a clear margin.

1. Introduction

Video is one of the most informative media due to
the abundant multi-modal content and temporal dynam-
ics. Text-video retrieval systems enable humans to search
videos with a simple and natural interaction approach. Re-
cently, some efforts have been made in building retrieval
systems with complex text inputs [2, 9], e.g., retrieving con-
tents of “a group of men inspect and test a brand new yellow
car”. This is more applicable as the users could search con-
tent based on more detailed descriptions.

One of the promising directions to enable cross-modal
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Figure 1. Global alignment gives a comprehensive similarity mea-
surement between texts and videos. Local alignment provides fine-
grained comparisons by computing the similarities between the lo-
cal text-video features from the same semantic centers.

video retrieval is to measure text-video similarities using
metric learning [34, 7]. In this case, the common prac-
tice is to embed both descriptions and videos into a joint
embedding space. Most existing works [24] [6] [22] [9]
encode the descriptions and video content to global repre-
sentations and compare their similarities from a global per-
spective. These methods focus on the learning of effective
language and video representations but overlook the fine-
grained semantic alignment. For instance, Gabeur et al. [9]
leveraged a multi-modal transformer to enhance the valu-
able cross-modal interaction to generate more discrimina-
tive video features. Some other works [2, 21, 32] lever-
aged complex cross-modal matching operations to exploit
the local details and align multiple semantic cues. Chen
et al. [2] proposed a hierarchical graph reasoning model to
capture both global events and local actions through local
graph matching. They manually designed three levels of se-
mantics, including events, actions, and entities. However,
these methods require a high computational cost due to the
expensive pairwise matching operation.



In this paper, we propose an efficient global-local se-
quence alignment method for text-video retrieval. In the
local perspective, we aim to utilize a number of learn-
able semantic topics to jointly summarize both texts and
videos. Instead of parsing text descriptions to a hierarchi-
cal semantic role graph [2], it is hoped that these semantic
topics could be discovered and automatically learned dur-
ing the end-to-end training. We further share the weights
of text topics and video topics to offer a joint topic repre-
sentation learning and to reduce the semantic gap between
text and video data. To achieve local alignment, we mini-
mize the distance between the grouped text feature and the
corresponding grouped video features within the same top-
ics. In the global perspective, the multi-modal video se-
quences are aggregated temporally within each modality.
The global similarity is computed between the aggregated
video features and global text features. The global align-
ment not only serves as a complementary measurement to
local alignment but also provides additional supervision for
the learnable semantic topics.

We implement the idea of local semantic topic alignment
with the help of a NetVLAD operation [1]. In NetVLAD,
the learnable centers are regarded as “visual words” of the
input data, which can be readily utilized as latent seman-
tic topics on our cross-modal video retrieval task. For both
text and video modalities, we use NetVLAD operations to
obtain an aggregated feature for each topic, where the topic
centers are shared between the two modalities. The text
features and video features are softly assigned to topics
based on their corresponded similarities. Without complex
graph operations [2] and multi-layer transformers [9], we
surprisingly find that our collaborative encoding method,
namely Text-to-Video VLAD (T2VLAD), could boost the
retrieval performance on various datasets. The contribution
of this paper can be summarized as below:

• First, we propose to automatically learn text-and-video
semantic topics and re-emphasize the importance of
local semantic alignment between texts and videos for
better cross-modal retrieval.

• Second, we introduce an effective strategy to locally
align text inputs and video inputs. Based on the
success of NetVLAD encoding [1], we propose a
T2VLAD encoding for cross-modal retrieval, where
we exploit shared centers to reduce the semantic gap
between texts and videos instead of the complex pair-
wise local matching operation.

• Third, we demonstrate significant improvements of
T2VLAD on three standard text-video retrieval bench-
marks, i.e., MSRVTT [35], ActivityNet Captions
[19], and LSMDC [28]. Notably, we outperform a
HowTo100M-pretrained [25] multi-modal transformer

[9] with 2.9% gain (Rank@1) on MSRVTT without
any additional data.

2. Related Work
Text-Video Retrieval. There are increasing interests in
advancing text-video retrieval performance [27, 8, 2, 9].
Compared to text-image retrieval [7, 17, 16], text-video
retrieval is more challenging that requires the understand-
ing of temporal dynamics and complicated text seman-
tics. A few works [27, 26] focus on visual semantic
embedding learning for text and video joint modeling.
Mithun et al. [26] leveraged a simple text-image embedding
method [7] to improve the training strategy with hard neg-
ative mining, and incorporated multi-modal features (RBG,
motion, and audio) to enrich the video representations.
Dong et al. [6] proposed dual-encoding network with mul-
tiple levels of features for text-video retrieval, i.e., features
obtained by mean pooling, bi-directional Gated Recurrent
Unit and Convolution Layers. Yu et al. [37] proposed a joint
fusion model using Long Short-Term Memory for temporal
sequential information encoding between videos and texts.
Liu et al. [22] further utilize all modalities that can be ex-
tracted from videos such as speech contents and scene texts
for video encoding. Miech et al. [24] introduced a strong
joint embedding using mixture-of-expert features, which
are later utilized in [9].

Language Representation Learning. Language repre-
sentations are usually learned using sequence encoders, e.g.,
Long Short-Term Memory [12], Gated Recurrent Unit [3].
Recently, with the success of BERT model [4] in contex-
tual text representation learning using multi-layer trans-
former architectures [30], many vision-and-language works
[9, 29, 43] leveraged pre-trained BERT features to enhance
the language representation capability. Similar to [9], we
use the BERT model during text-video retrieval and the
model is fine-tuned during our end-to-end cross-modal re-
trieval training.

VLAD Encoding. VLAD [15] and NetVLAD [1] have
achieved great impacts in aggregating discriminative fea-
tures for video classification [10, 36], video retrieval [24],
person re-identification [40]. NetVLAD is an end-to-
end differentiable layer that could be readily plugged into
many existing models. These works usually leverage the
NetVLAD layer as a discriminative feature learner for
downstream tasks. However, in this paper, we leverage
NetVLAD in text-video local similarity matching and in-
troduce a local alignment loss to reduce the gap of locally
learned features from texts and videos. We do not conduct
classification upon the obtained aggregated features, but ap-
ply local alignment between the text and video features.



3. Method

3.1. Overview

We propose Text-to-Video VLAD (T2VLAD) for cross-
modal retrieval, which aligns text and video features in a
global and local perspective. Given a text-video pair, our
goal is to encode it into a joint feature space to measure
the similarity. As shown in Fig. 2, we leverage multiple
experts to extract the local video features corresponding to
each modality (Section 3.2). The BERT model is utilized to
extract contextual word features (Section 3.3). After that,
we feed all the video features from different experts to a
self-attention layer to enhance the features based on cross-
modal relations. The output video features and text features
are assigned to a set of cluster centers, which are shared
between text encoding and video encoding. We aggregate
the local features based on the assignments and generate
the locally aligned features for both video and text to com-
pute a local video-text similarity (Section 3.4). To provide
additional supervision on the local alignment and introduce
complementary information, we develop a global alignment
scheme (Section 3.5).

3.2. Video Representations

Compared to image data, videos are more complex
and contain richer information such as motion, audio and
speech. To make full use of the multi-modal information
in video data for the text-video retrieval task, we lever-
age multiple experts [24, 22, 9] to encode raw videos.
Specifically, given an input video, we leverage N experts
{E1,E2, . . . ,EN} to extract multi-modal features. Here
En represents the n-th expert. Each expert is pretrained
on a particular task to acquire specific knowledge on the
corresponding modal. Our goal is to achieve both local
and global alignment for text-video retrieval, so we ex-
tract features from each temporal segment. For each ex-
pert, we obtain a set of segment-level video representations,
i.e., {En(x1),En(x2), . . . ,En(xT )}. Here T is the num-
ber of segments, and xt is the t-th segment from a video.
We leverage the following two operations to further process
the segment-level multi-expert features for the subsequent
global-local alignment.

First, we introduce to generate global expert features
for global alignment. We aim to perform temporal aggre-
gation for each expert to generate global expert features.
There are a few existing temporal aggregation operations
to obtain a global vector, e.g., temporal convolution net-
works [20], Transformers [30] and NetVLAD [1]. For sim-
plicity, we leverage a max-pooling operation without ad-
ditional parameters. This simple operation works well in
our experiments. The temporal-aggregated features are pro-
jected to the same dimension for the subsequent clustering.
Following [24], we then enhanced the features by a self-

gating mechanism. Consequently, we obtain a set of global
expert features {F video

1 ,F video
2 , . . . ,F video

N }, where N is
the number experts.

Second, we use one self-attention layer to fuse multi-
expert features for local alignment. We first employ a
fully-connected layer for each expert to project different ex-
pert features to a C-dimensional embedding space. We then
concatenate the features from all experts to generate the lo-
cal features Zvideo = {zvideo

1 , zvideo
2 , . . . ,zvideo

M }, where
M is the number of features from all experts. We further
explore the relations among the multi-modal features with
self-attention mechanism. This design is similar to [9] but
has two differences: (1) We only use an one-layer trans-
former encoder [30] instead of the multi-layer transformer
with pre-aggregation and position encoding as in [9]. Thus,
our module introduces fewer parameters and is more com-
putationally efficient; (2) We aim to maintain the locality of
the input features while [9] generates aggregated expert fea-
tures for the subsequent text-to-video matching. The output
feature Zvideo of this process has the same length as the
input features.

3.3. Text Representations

The BERT model [4] has shown great generalization
capabilities in language feature encoding. We leverage a
pre-trained BERT model to fairly compared to [9]. The
BERT model extracts the contextual word embeddings for
each text input. The input sentences are tokenized and
padded to be a fixed-length sequence. The fixed-length se-
quence is the input to the BERT model. We add special
tokens like “[CLS]” and “[SEP]” to indicate the start and
the end of the sentence. The features can be computed as
Ztext = ΦBERT (S), where ΦBERT is the BERT model,
S is the input tokens. Ztext = {ztext

1 , ztext
2 , . . . ,ztext

B },
where B is the sequence length. The BERT model ΦBERT

is optimized with the other modules in our framework in an
end-to-end manner. It provides powerful text modeling ca-
pacity. Different from video encoding, the global features
for text are extracted jointly with local representations for
the subsequent T2VLAD module.

3.4. Local Alignment

After the aforementioned text encoding and video en-
coding, we obtain B local contextual word embeddings
Ztext and M video local features Zvideo for each input
text-video pair. These features contain abundant informa-
tion about the input sentences and videos. However, the
direct comparisons between the two types of features are
not feasible because they are not well-aligned. Moreover,
the local video features Zvideo are from different modali-
ties. The domain gaps increase the difficulties of the local
alignment. Intuitively, if we select and aggregate the lo-
cal text features and video features on the same topic and
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[SEP]
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Figure 2. Our T2VLAD framework. “TA” indicates temporal aggregation. Given a text-video pair, we leverage multiple experts to extract
the local video features corresponding to each modality. A BERT model is utilized to extract contextual word features. We feed all the
video features from different experts to a self-attention layer to enhance the features based on cross-modal relations. The output video
features and text features are assigned to a set of shared centers. We aggregate the local features based on the assignments and generate the
locally aligned features for both video and text to compute a local video-text similarity. We develop a global alignment scheme in which
the video features from each expert are aggregated to a global feature to calculate a similarity with the projected global text feature.

then compare their similarities, the measurement would be-
come more precise. Motivated by this spirit, we propose
Text-to-Video VLAD (T2VLAD) to cluster the local fea-
tures from multiple modalities with shared centers. These
centers provide shared semantic topics which can bridge the
gaps among different modalities. Inspired by [1], these cen-
ters can be learned jointly with the whole network, and the
feature clustering can be performed on-the-fly.

Specifically, we learn K + 1 C-dimensional shared clus-
ter centers {c1, c2, . . . , cK , cK+1}. Here the K centers are
for local alignment and the additional center is for back-
ground information removal. The design of the background
center shares the same spirit of [41] to discard noise infor-
mation. We follow [1] to calculate the similarities between
each local feature and the cluster centers using dot-product.
This step computes assignments on the corresponding clus-
ters. We start with the encoding of video features. Given
a local video feature zvideo

i , its assignments to j-th cluster
can be generated as follows,

ai,j =
exp(zvideo

i cTj + bj)∑K+1
k=1 exp(zvideo

i cTk + bk)
, (1)

where bj is a learnable bias term. In practice, one can re-
place the bias term with a batch normalization layer [14]
which normalizes and shifts the activation by two built-in
learnable parameters. Then the aggregated residual feature

on each centers can be obtained,

gvideo
j = normalize(

M∑
i=1

ai,j(z
video
i − c′j)), (2)

where the c′j is trainable weights that have the same size
as cj , and “normalize” indicates a `2-normalization opera-
tion. The design of introducing two centers for each cluster
has been proposed in [1] to increase the adaptation capabil-
ity of the NetVLAD layer. We obtain a set of aggregated
video feature Gvideo = {gvideo

1 , gvideo
2 , . . . , gvideo

K }. Each
feature in Gvideo is the aligned local feature for the video.
Note that the aggregated feature on the background center
is abandoned and not involved in the following similarity
measurement.

The aggregated text features can be calculated in the
same way using the shared cluster centers.

gtext
j = normalize(

B∑
i=1

exp(ztext
i cTj + bj)∑K+1

k=1 exp(ztext
i cTk + bk)

(ztext
i − c′j)),

(3)

where ztext
i is the local word embedding in Ztext.

We can obtain the final local feature Gtext =
{gtext

1 , gtext
2 , . . . , gtext

K } for the text sequence. Since the
local feature assignment and aggregation for video and text
share the same centers, the final features Gvideo and Gtext



can be aligned effectively. We utilize cosine distance to
measure the local similarity between the final video and text
features slocal = dist(Gvideo,Gtext).

3.5. Global Alignment

We introduce global alignment for two reasons. First,
the global features for text-video pairs are more compre-
hensive and complementary to local features. Second, the
elaborate local alignment with trainable centers can be dif-
ficult to be optimized when lacking auxiliary supervision,
especially when the video features consist of multi-modal
information.

Therefore, we alleviate the optimization difficulty in
global alignment by aggregating and transforming the
video feature from each expert independently. Meanwhile,
we utilize the concatenation of local text features Gtext

to generate the expert-specific global text representations
{F text

1 ,F text
1 , . . . ,F text

N }. And each feature is then used
to compute the similarity with the corresponding video ex-
pert feature. Following [24], we compute the global text-
video similarity as a weighted sum of cosine distances be-
tween each global video expert feature and corresponding
text feature. Formally, the global similarity is calculated as
follows,

sglobal =

N∑
i=1

wi ∗ dist(F text
i ,F video

i ), (4)

where wi is the weight for the i-th expert. The weights
are generated from the text representation Gtext by a lin-
ear projection with a softmax normalization. We utilize the
text-video similarity s = 1

2 (sglobal+slocal) to obtain a sim-
ple bi-directional max-margin ranking loss on both text-to-
video and video-to-text retrieval tasks, following [24, 9].
We refer the reader to [24, 9] for detailed descriptions.

4. Experiments
4.1. Experimental Details

Dataset. We experiment with MSRVTT [35], video-text
datasets. The MSRVTT dataset contains 10,000 videos.
These videos are collected from YouTube using 257 queries
from a commercial video search engine. We evaluate the
performance on three splits. For the “1k-A” split, the train
and test are split as introduced in [37]. The “1k-B” split
is obtained following [24]. Both splits use 9,000 videos
for training, and the remaining 1,000 videos are used for
testing. The ActivityNet Captions dataset [19] consists of
20,000 videos. Each video is densely annotated with mul-
tiple sentence descriptions. The LSMDC dataset [28] con-
sists of 118,081 short video clips. The videos are extracted
from 202 long movies.
Evaluation Metrics. We report the results with the stan-
dard video retrieval metrics, i.e., Rank K (R@K, higher is

better), Median Rank (MdR, lower is better). We report
R@1, R@5, and R@10 following [2, 22].
Multi-Expert Features. We use the features provided by
[9] in our experiments. These features are: Motion fea-
tures from S3D [33] trained on the Kinetics dataset. Au-
dio features from VGGish model [11] trained on YT8M.
Scene embeddings from DenseNet-161 [13] trained on the
Places365 dataset [42]. We refer the readers to [9] for more
descriptions of OCR, Face, Speech, and Appearance fea-
tures. For MSRVTT, we also leverage optical flow features
released by [9]. We do not use Speech features on LSMDC
due to feature missing from the released features [9].
Implantation Details. We train the projection layer and
the T2VLAD module from scratch, and no additional data
is used. The margin in the ranking loss is set to 0.02 for
all datasets. Following [22], we leverage Ranger optimizer
with a weight decay 0.0001. We initialize the learning rate
at 0.0001, and decay by a multiplicative factor 0.9 every
5 epochs. The batch size of the video-text pairs is set to
64. For text encoding, we use the pretrained BERT model
“BERT-base-uncased” and fine-tune it with our framework
in an end-to-end manner. For video expert encoding, we
leverage the pre-extracted expert features provided by [9].
We use all 8 experts for the MSRVTT dataset and 6 experts
(rgb, audio, ocr, scene, flow and action) for the LSMDC
dataset. For ActivityNet Captions, we only use motion
and audio experts. The self-attention module used for lo-
cal video features is implemented by one layer multi-head
attention with 4 heads, a dropout probability of 0.1, and a
hidden size of 768. The dimension for the common space
of both global alignment and local alignment is also set to
768. We set the center size of our T2VLAD to 9 for the short
video retrieval dataset (MSRVTT and LSMDC) and 16 for
the long video retrieval dataset (ActivityNet Captions).

4.2. Comparison to State-of-the-art

MSRVTT. The results on MSRVTT are shown in Table
1. We consistently improve the state-of-the-art on text-to-
video retrieval and video-to-text retrieval across all three
splits. MMT [9] is recently proposed to perform text-
video retrieval using multi-modal transformers. It achieved
the best performance in the compared methods. Notably,
for text-to-video retrieval, we outperform MMT [9] with
5.8% gain on the R@1 metric on the 1k-B split (20.3%
vs. 26.1%). A 5.6% improvement on R@1 (1k-B split) is
also obtained compared to MMT [9] for video-to-text re-
trieval (21.1% vs. 26.7%). These results demonstrate the
benefits of our T2VLAD in cross-modal retrieval tasks. No-
tably, we obtain consistent improvements over “MMT +
HT pretrain” [9] on the 1k-A split. “MMT + HT pretrain”
is pre-trained on a large-scale instructional video dataset,
i.e., HowTo100M, containing more than one hundred mil-
lion video clips with machine-generated descriptions. Pre-



Method Split
Text → Video Video → Text

R@1↑ R@5↑ R@10↑ MdR↓ R@1↑ R@5↑ R@10↑ MdR↓
JSFusion [37] 1k-A 10.2 31.2 43.2 13 - - - -
HT [25] 1k-A 14.9 40.2 52.8 9 - - - -
CE [22] 1k-A 20.9 48.8 62.4 6 20.6 50.3 64.0 5.3
MMT [9] 1k-A 24.6 54.0 67.1 4 24.4 56.0 67.8 4
MMT + HT pretrain [9] 1k-A 26.6 57.1 69.6 4 27.0 57.5 69.7 3.7
Our T2VLAD 1k-A 29.5 59.0 70.1 4 31.8 60.0 71.1 3
MEE [24] 1k-B 13.6 37.9 51.0 10 - - - -
JPose [31] 1k-B 14.3 38.1 53.0 9 16.4 41.3 54.4 8.7
MEE-COCO [24] 1k-B 14.2 39.2 53.8 9 - - - -
CE [22] 1k-B 18.2 46.0 60.7 7 18.0 46.0 60.3 6.5
MMT [9] 1k-B 20.3 49.1 63.9 6 21.1 49.4 63.2 6
Our T2VLAD 1k-B 26.1 54.7 68.1 4 26.7 56.1 70.4 4
VSE [26] Full 5.0 16.4 24.6 47 7.7 20.3 31.2 28
VSE++ [26] Full 5.7 17.1 24.8 65 10.2 25.4 35.1 25
Mithun et al. [26] Full 7.0 20.9 29.7 38 12.5 32.1 42.4 16
W2VV [5] Full 6.1 18.7 27.5 45 11.8 28.9 39.1 21
Dual Enc. [6] Full 7.7 22.0 31.8 32 13.0 30.8 43.3 15
HGR [2] Full 9.2 26.2 36.5 24 15.0 36.7 48.8 11
E2E [23] Full 9.9 24.0 32.4 29.5 - - - -
CE [22] Full 10.0 29.0 41.2 16 15.6 40.9 55.2 8.3
Our T2VLAD Full 12.7 34.8 47.1 12 20.7 48.9 62.1 6

Table 1. The comparison with the state-of-the-art methods on the MSRVTT [35] dataset.

Method
Text → Video Video → Text

R@1 ↑ R@5 ↑ R@50 ↑ MdR ↓ R@1 ↑ R@5 ↑ R@50 ↑ MdR ↓
FSE [39] 18.2 44.8 89.1 7 16.7 43.1 88.4 7
CE [22] 18.2 47.7 91.4 6 17.7 46.6 90.9 6
HSE [39] 20.5 49.3 - - 18.7 48.1 - -
MMT [9] 22.7 54.2 93.2 5 22.9 54.8 93.1 4.3
Ours 23.7 55.5 93.5 4 24.1 56.6 94.1 4

Table 2. The comparisons with the state-of-the-art methods on the ActivityNet Captions dataset.

training on HowTo100M significantly improves the perfor-
mance of MMT across all evaluation metrics. T2VLAD
does not leverage additional training videos, but we out-
perform “MMT + HT pretrain” on split 1k-A with a clear
margin across all metrics. For instance, on text-to-video
retrieval, T2VLAD outperforms “MMT + HT pretrain” by
2.9% at R@1. These results demonstrate that the benefit of
the global-local alignment using T2VLAD.

The efficiency of our method is demonstrated by calcu-
lating inference time for 1k videos and 1k text queries from
MSRVTT on a single V100 GPU. Our video encoding mod-
ule (except expert encoding) only takes 0.4s for process 1k
videos while MMT takes 1.1s. This shows the superiority
of our efficient T2VLAD design.

ActivityNet Captions. ActivityNet Captions consists of
long videos and the captions contain several sentences. The
results on this dataset are shown in Table 2. The com-
pared baselines include HSE [2], CE [22], HSE [39], and
MMT [9]. HSE [39] leverages a hierarchical sequence em-
bedding and MMT incorporates multi-layer transformers
for strong video feature learning. We consistently improve

MMT over all benchmark metrics, which demonstrates the
effectiveness of T2VLAD on long-term text-video model-
ing.
LSMDC. The LSMDC data is collected from movies. The
results are shown in Table 3. We observe consistent im-
provements over MMT. For instance, we achieve 2.1% im-
provements on R@1 for video-to-text retrieval. The results
show that our T2VLAD is capable of dealing with different
videos from different domains.

4.3. Ablation Study

The effectiveness of the global-local alignment. In Ta-
ble 4, we show the results of only using the single align-
ment of our model. To implement the model without local
alignment, we follow [9] to utilize the “[CLS]” output of
the BERT model as the global text representation. When we
remove the local alignment branch and only train the global
alignment, the test performance drops a lot compared to the
results of our full model. This proves our local alignment is
crucial for the cross-modal retrieval task. When we remove
the global alignment and only train the local alignment, the



Method
Text → Video Video → Text

R@1 ↑ R@5 ↑ R@50 ↑ MdR ↓ R@1 ↑ R@5 ↑ R@50 ↑ MdR ↓
CT-SAN [38] 5.1 16.3 25.2 46 - - - -
JSFusion [37] 9.1 21.2 34.1 36 - - - -
CCA [18] 7.5 21.7 31.0 33 - - - -
MEE [24] 9.3 25.1 33.4 27 - - - -
MEE-COCO [24] 10.1 25.6 34.6 27 - - - -
CE [22] 11.2 26.9 34.8 25.3 - - - -
MMT [9] 13.2 29.2 38.8 21 12.1 29.3 37.9 22.5
Ours 14.3 32.4 42.2 16 14.2 33.5 41.7 17

Table 3. The comparison with the state-of-the-art methods on the LSMDC dataset.

Method
Text → Video Video → Text

R@1↑ R@5↑ R@10↑ MdR↓ R@1↑ R@5↑ R@10↑ MdR↓
Ours w/o Global Alignment 24.3 51.5 63.4 5 26.6 52.9 62.6 5
Ours w/o Local Alignment 22.2 49.9 64.6 6 24.0 51.7 65.6 5
Full model 29.5 59.0 70.1 4 31.8 60.0 71.1 3

Table 4. The ablation studies on the MSRVTT [35] dataset to investigate the effectiveness of global-local alignment.

A guy extinguishes something then talks into the camera with another guy.

extinguishes something then talks into the camera with another guya guy

Center 1

0.1143, 0.1468, 0.0472, 0.0584, 0.0302, 0.0797, 0.0860, 0.0870, 0.0702, 0.0574, 0.0481, 0.0484

1.6175, 3.6413, 0.3019, 0.3999, 0.1977, 0.6807, 0.7969, 0.8172, 0.5365，0.3901, 0.3088, 0.3115

Center 2

0.3890, 1.7374, 0.7001, 2.2046, 0.7042, 0.2711, 0.3740, 1.3341, 0.2916,0.8138, 0.6691, 0.5109

Center 6

0.3956, 0.2471, 0.8942, 1.2745, 0.1306, 1.4865, 0.6240, 0.2535, 1.7060, 0.7760, 2.1162, 0.0957

0.114 0.147 0.148

0.189

0.1780.173

0.167

0.1496 0.1353 0.0956 0.0883

0.106

0.2920.112
0.110 0.108 0.098 0.096 0.092 0.150

0.135 0.096
0.088

Figure 3. Visualization of the assignment weights. We take Video 7060 in the MSRVTT 1K-A test set as an example. We plot the top text
assignments to the three centers as black lines and put the assignment values next to the line. The Top-10 frames (the padding features
have been removed.) correspond to the appearance features assigned to the centers are shown at the bottom.

loss can not converge. It demonstrates the importance of
global alignment for providing additional supervision for
the optimization of the local alignment. We show the re-
sults of removing the global alignment only at test time,
i.e., “Ours w/o Global Alignment” in Table 4. Compared to
the full model, the results drop by 5.2% on R@1 for text-
to-video retrieval. It demonstrates that the global feature is
complementary to the local information.

The effectiveness of collaborative VLAD. In “Ours w/
only text VLAD”, we replace the shared NetVLAD layer
for local video feature encoding with a max-pooling oper-
ation and then project the feature to the same dimension of
text local features. This model achieves lower performance
than our T2VLAD, showing the importance of joint VLAD
encoding. In “Ours w/ two separate VLAD”, we do not
perform center sharing between text feature encoding and
video feature encoding. The VLAD centers are learned sep-
arately. The results show that our strategy of sharing cen-
ters outperform “Ours w/ two separate VLAD” especially
for text-to-video retrieval. This demonstrates that our cen-
ter sharing idea is beneficial to reduce the semantic gap be-

tween text and video data.

4.4. Qualitative Results

Visualization of the assignments. The text local features
and the local video features are assigned to a set of shared
centers in our T2VLAD. We expect the aggregated text fea-
ture and video feature on the same center to share a similar
topic. In Fig. 3, we illustrate the text assignments and video
appearance feature assignments on three centers. The video
is ranked first in the text retrieved results. We show the
video frames corresponding to the appearance features that
are assigned to the certain center. As shown in Fig. 3, the
text feature with the highest assignment on Center 1 is the
feature of “guy”. All the frames that have been assigned to
Center 1 also contain the appearance information of “guy”.
The text with the highest assignment on Center 2 is “some-
thing”, and the only frame assigned to the center is about
the “something” in the video. On Center 6, the text “some-
thing”, “talks”, “camera” and “another” all have high as-
signments. And the frames assigned to the center contain
these content. Interestingly, the most salient word “extin-



Method
Text → Video Video → Text

R@1↑ R@5↑ R@10↑ MdR↓ R@1↑ R@5↑ R@10↑ MdR↓
Ours w/ only text VLAD 27.4 57.3 68.2 4 27.5 57.4 69.7 4
Ours w/ two separate VLAD 28.6 58.1 70.4 4 30.4 60.7 72.1 3
Ours w/ two shared VLAD 29.5 59.0 70.1 4 31.8 60.0 71.1 3

Table 5. The ablation studies on the MSRVTT [35] dataset to investigate the effectiveness of the VLAD encoding.

Query 7028: a boy band sings and dances in front of a Chinese pagoda.

Rank1

Rank2

Rank3

Query 7138: a car drives up and parks in a parking space.
.

Rank1

Rank2

Rank3

Figure 4. The text-video retrieval results on the MSRVTT 1K-A test set. The left are the videos ranked by our T2VLAD, and the right are
the results from the model with only global alignment.

guishes” in the human view, always has a low assignment
value on all centers. This is because the limited training
data is not enough to enable the understanding of a low-
frequency word. The assignment visualization verifies that
our T2VLAD can achieve adequate local alignment for text-
to-video retrieval.

Visualization of the text-to-video results. We show two
examples of the videos retrieved by our method and the
model without the local alignment branch. As shown in
Fig. 4, the two query sentences consist of multiple seman-
tic topics. Our T2VLAD successfully retrieves the ground-
truth video while the model without local alignment re-
turns several videos that are somewhat relevant to the query
sentence but are not precise. In the second example, our
T2VLAD achieves a better alignment between the text and
videos on the local semantic cue “parks”. These results
demonstrate that our T2VLAD can align multiple seman-

tic cues effectively.

5. Conclusion

In this paper, we introduce an end-to-end text-video se-
quence alignment method. We show that local semantic
alignment between texts and videos is critical for high-
performance retrieval systems. We achieve the goal of local
alignment based on NetVLAD and introduce T2VLAD for
collaborative text-video encoding. The results on three stan-
dard text-video retrieval benchmarks clearly demonstrate
the effectiveness of our method. The visualization results
also validate our motivation for joint semantic topic learn-
ing. In the future, more efforts could be paid to obtain better
global video features with end-to-end optimization.
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Pérez. Aggregating local descriptors into a compact image
representation. In CVPR, 2010. 2

[16] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic align-
ments for generating image descriptions. In CVPR, 2015. 2

[17] Ryan Kiros, Ruslan Salakhutdinov, and Richard S Zemel.
Unifying visual-semantic embeddings with multimodal neu-
ral language models. arXiv preprint arXiv:1411.2539, 2014.
2

[18] Benjamin Klein, Guy Lev, Gil Sadeh, and Lior Wolf. Asso-
ciating neural word embeddings with deep image represen-
tations using fisher vectors. In CVPR, 2015. 7

[19] Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and
Juan Carlos Niebles. Dense-captioning events in videos. In
ICCV, 2017. 2, 5

[20] Colin Lea, Michael D Flynn, Rene Vidal, Austin Reiter, and
Gregory D Hager. Temporal convolutional networks for ac-
tion segmentation and detection. In CVPR, 2017. 3

[21] Kuang-Huei Lee, Xi Chen, Gang Hua, Houdong Hu, and Xi-
aodong He. Stacked cross attention for image-text matching.
In ECCV, 2018. 1

[22] Y. Liu, S. Albanie, A. Nagrani, and A. Zisserman. Use what
you have: Video retrieval using representations from collab-
orative experts. In BMVC, 2019. 1, 2, 3, 5, 6, 7

[23] Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan
Laptev, Josef Sivic, and Andrew Zisserman. End-to-end
learning of visual representations from uncurated instruc-
tional videos. In CVPR, 2020. 6

[24] Antoine Miech, Ivan Laptev, and Josef Sivic. Learning a
text-video embedding from incomplete and heterogeneous
data. arXiv preprint arXiv:1804.02516, 2018. 1, 2, 3, 5,
6, 7

[25] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac,
Makarand Tapaswi, Ivan Laptev, and Josef Sivic.
Howto100m: Learning a text-video embedding by watching
hundred million narrated video clips. In ICCV, 2019. 2, 6

[26] Niluthpol Chowdhury Mithun, Juncheng Li, Florian Metze,
and Amit K Roy-Chowdhury. Learning joint embedding
with multimodal cues for cross-modal video-text retrieval.
In ICMR, 2018. 2, 6

[27] Yingwei Pan, Tao Mei, Ting Yao, Houqiang Li, and Yong
Rui. Jointly modeling embedding and translation to bridge
video and language. In CVPR, 2016. 2

[28] Anna Rohrbach, Marcus Rohrbach, Niket Tandon, and Bernt
Schiele. A dataset for movie description. In CVPR, 2015. 2,
5

[29] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and
Cordelia Schmid. Videobert: A joint model for video and
language representation learning. In ICCV, 2019. 2

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 2,
3

[31] Michael Wray, Diane Larlus, Gabriela Csurka, and Dima
Damen. Fine-grained action retrieval through multiple parts-
of-speech embeddings. In ICCV, 2019. 6

[32] Yu Wu, Linchao Zhu, Yan Yan, and Yi Yang. Dual attention
matching for audio-visual event localization. In ICCV, 2019.
1

[33] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and
Kevin Murphy. Rethinking spatiotemporal feature learning:
Speed-accuracy trade-offs in video classification. In ECCV,
2018. 5

[34] Eric P Xing, Michael I Jordan, Stuart J Russell, and An-
drew Y Ng. Distance metric learning with application to
clustering with side-information. In NeurIPS, 2003. 1

[35] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large
video description dataset for bridging video and language. In
CVPR, 2016. 2, 5, 6, 7, 8



[36] Zhongwen Xu, Yi Yang, and Alex G Hauptmann. A dis-
criminative cnn video representation for event detection. In
CVPR, 2015. 2

[37] Youngjae Yu, Jongseok Kim, and Gunhee Kim. A joint se-
quence fusion model for video question answering and re-
trieval. In ECCV, 2018. 2, 5, 6, 7

[38] Youngjae Yu, Hyungjin Ko, Jongwook Choi, and Gunhee
Kim. End-to-end concept word detection for video caption-
ing, retrieval, and question answering. In CVPR, 2017. 7

[39] Bowen Zhang, Hexiang Hu, and Fei Sha. Cross-modal and
hierarchical modeling of video and text. In ECCV, 2018. 6

[40] Liang Zheng, Yi Yang, and Qi Tian. Sift meets cnn: A
decade survey of instance retrieval. TPAMI, 2017. 2

[41] Yujie Zhong, Relja Arandjelović, and Andrew Zisserman.
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