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Symbiotic Attention for Egocentric Action
Recognition with Object-centric Alignment

Xiaohan Wang , Linchao Zhu , Yu Wu , Yi Yang

Abstract—In this paper, we propose to tackle egocentric action recognition by suppressing background distractors and enhancing
action-relevant interactions. The existing approaches usually utilize two independent branches to recognize egocentric actions, i.e., a
verb branch and a noun branch. However, the mechanism to suppress distracting objects and exploit local human-object correlations is
missing. To this end, we introduce two extra sources of information, i.e., the candidate objects’ spatial location and their discriminative
features, to enable concentration on the occurring interactions. We design a Symbiotic Attention with Object-centric feature Alignment
framework (SAOA) to provide meticulous reasoning between the actor and the environment. First, we introduce an object-centric
feature alignment method to inject the local object features to the verb branch and noun branch. Second, we propose a symbiotic
attention mechanism to encourage the mutual interaction between the two branches and select the most action-relevant candidates for
classification. The framework benefits from the communication among the verb branch, the noun branch, and the local object
information. Experiments based on different backbones and modalities demonstrate the effectiveness of our method. Notably, our
framework achieves the state-of-the-art on the largest egocentric video dataset.

Index Terms—Egocentric Video Analysis, Action Recognition, Deep Learning, Symbiotic Attention
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1 INTRODUCTION

Video recognition is an important task in the computer
vision community. With the emerging of deep convolu-
tional neural networks [1], [2], [3], [4] and large-scale video
datasets [5], [6], [7], the action recognition performance has
been prominently boosted [8], [9], [10], [11], [12]. However,
most existing methods focus on recognizing videos captured
from a third-person viewpoint. The progress in the first-
person video has been relatively slow. Recently, egocentric
action recognition has attracted increasing attention with the
widespread applications of wearable cameras.

Compared to third-person videos, egocentric videos con-
tain more complex scenes. Egocentric action recognition
requires to distinguish the object that human is interacting
with from various small distracting objects [13], [14]. Ac-
tion recognition in egocentric videos provides a uniquely
naturalistic insight into how a person or an agent interacts
with the world. To enable the recognition of more complex
videos, a challenging large-scale first-person dataset, i.e.,
EPIC-Kitchens [14], was recently introduced for egocentric
daily human activities understanding. This dataset provides
rich interactions, covering adequate objects and natural
actions. The intense camera motion, occlusion, and first-
person viewpoint make it even more challenging to recog-
nize fine actions.

In EPIC-Kitchens, the actions are defined by the combi-
nation of verb and noun, e.g., “open door” and “cut potato”.
Due to the large action vocabulary, the verb and the noun
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classifiers are usually trained separately [14], [15]. The verb
branch focuses on classifying actions (verbs) that the actor
is performing, e.g., “cut” and “open”. The main obstacles
for verb classification are large camera motion and subtle
occurring action locations. The noun branch is to identify
the object that the actor is interacting with. As shown in
Figure 1, distracting objects in oblique view decrease the
prediction score of the interacting object.

Damen et al. [16] evaluated several video models on
EPIC-Kitchens that were not specially designed for the
egocentric action recognition such as TSN [11], TSM [17] and
TRN [18]. These models failed to achieve high classification
score due to the absence of location-aware guidance for the
complex scenes in first-view videos.

Recently, Wu et al. [15] leveraged object detection fea-
tures to introduce longer context information for the noun
classification network in egocentric action recognition. The
long-term feature bank is aggregated via a simple max
pooling or average pooling operation, while the more so-
phisticated non-local operator is found to be not that effec-
tive. The verb branch and the noun branch are optimized
independently. They only consider the interaction between
the noun branch and the object features but fail to enable
the communication between the verb branch and the noun
branch. Baradel et al. [19] designed an object relation net-
work for high-level object reasoning, where the relation
modeling branch facilitates object masks to generate local
object features. The object reasoning only performs on the
object branch. It lacks interactions with the activity branch.
These works ignore the mutual communication between the
standalone verb and noun branches. They only focus on con-
textual modeling and relation reasoning on a single branch.
However, an action is determined by both the interacting
object and the motion that the actor is performing. It could
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Fig. 1. The illustration of the object-centric feature alignment. For verb
classification, the spatial location provided by the detector can possible
reduce the object-irrelevant motions. Local motion features aligned with
object features serve as possibly action candidates. For noun classifi-
cation, global alignment inject the local object features into the context-
aware global feature. These location-aware feature candidates from the
two branches are beneficial to the subsequent meticulous reasoning.

be difficult even for a human to recognize an action by only
looking at the objects while ignoring the actor’s intention, or
only understanding motion changes without the awareness
of the interacting object.

To better exploit the local object guidance and the mutual
benefits of the interactions between different branches, we
make the following contributions.

We first propose an object-centric feature alignment
method to dynamically integrate location-aware informa-
tion to the verb and the noun branches. Our object-centric
feature alignment encourages the meticulous reasoning be-
tween the actor and the environment. The object-centric fea-
tures are extracted by an object detection model, providing
finer local information that is beneficial to the attendance of
an on-going action. The noun branch and the verb branch
integrate location-aware information by two different ap-
proaches (Fig. 1). We introduce global alignment for noun
classification. The noun features and the detection features
are complementary to each other, and proper integration
of these two features produces more accurate identification
of the interacted object. In this global alignment, we con-
catenate each detection feature with the global noun fea-
ture. The generated features incorporate both local relevant
features and global contextual features, which restrain the
features of irrelevant objects. We introduce local alignment
for verb classification. The verb feature contains motion
information, which is quite different from the appearance
information in noun feature and object features. The se-
mantic gap between verb features and detection features is
larger than the gap between noun features and detection
features. It may not be straightforward to integrate global
verb features with detection features directly. When we use

the aforementioned global alignment for verb classification,
it may generate indistinct features due to the accompa-
nying background motion noises. We propose to integrate
spatially-aligned verb features with object features. In this
way, the most relevant verb features will be generated for
better alignment with local object features. It eases the
difficulties of the integration between verb features and local
object features. We extract regional verb features from the
verb branch by pooling from the spatial feature map with
the given candidate spatial location. The regional motion
feature is then combined with the corresponding detection
feature.

After the object-centric alignment, we obtain a set of
candidate verb features and noun features. A symbiotic
attention mechanism is then introduced to enable mutual
interactions between the two branches and select the most
action-relevant features. It consists of two parts, i.e., cross-
stream gating mechanism and action-attended relation mod-
ule. The fused object-centric features contain useful local de-
tails. However, due to the existence of inaccurate detection
regions, there are quite a few disturbing background noises
in the features. To this end, we propose a cross-stream gating
mechanism to normalize the aligned features. This normal-
ization process suppresses the action-irrelevant noises and
enables mutual communication between the verb branch
and the noun branch. To further uncover the relationships
among the object-centric features and identify the most
action-relevant information, we develop an action-attended
relation module to examine each potential motion-object
pair and then generate the final representation for classifica-
tion. The proposed Symbiotic Attention with Object-centric
Alignment (SAOA) method dynamically integrates three
sources of information towards better action recognition.

We evaluate our framework with different backbones
and modalities on the largest egocentric video dataset, i.e.,
EPIC-Kitchens. We conducted experiments on two back-
bones (i.e., I3D [5] and ResNet-50 [3]), two modalities (i.e.,
RGB and optical flow). It can consistently improve the
performance over the baselines by a large margin with
different backbone and input modalities. The effectiveness
of our framework is validated both quantitatively and
qualitatively. Notably, our method outperforms the state-
of-the-art method [20] by 6.7% on the unseen test set and
2.9% on the seen test set of Epic-Kitchens. The ensemble of
the proposed method achieved first place in EPIC-Kitchens
Action Recognition Challenge 2020.

This paper is an extension of [21]. In our previous
work, global alignment is developed to integrate the object
features for both the verb branch and the noun branch.
And only the model with RGB frames as input and ResNet-
3D [22] backbone were studied. We extend [21] by propos-
ing a local alignment for verb classification to reduce the
object-irrelevant motions and alleviate the large semantic
gap between object features and motion features. Moreover,
extensive experiments on different backbone and input
modalities are conducted. That demonstrates our method
is general, and the two-stream SAOA can significantly im-
prove the recognition performance over the previous model
SAP. In summary, our main contributions are as follows:

First, we develop an object-centric alignment method to
inject local details into the verb branch and noun branch.
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The alignment allows the model to take advantage of the
location-aware object information and prevent it from con-
fusing with background noise.

Second, we propose a novel symbiotic attention mech-
anism to enable the mutual interaction between the verb
branch and the noun branch. It provides the meticulous
reasoning between the actor and the environment. The
experiment shows that the symbiotic attention is beneficial
to distinguish the action-relevant motion and object.

Third, extensive experiments demonstrate the effective-
ness and superiority of the proposed SAOA. Our results
outperform the state-of-the-art by a large margin on the
largest egocentric video dataset.

2 RELATED WORK

2.1 Deep Video Recognition
Deep learning methods have achieved promising perfor-
mance on the video classification task. 3D convolution
kernel was introduced in [9] to model the spatio-temporal
relation in videos. I3D [5] proposed to initialize 3D CNN
with the inflated weights of 2D CNN pre-trained on Im-
ageNet [23]. Hara et al. [22] evaluated various 3D CNN
architectures on Kientics [5] and demonstrated the effec-
tiveness of 3D models. More recently, P3D [24], S3D [12]
and R(2+1)D [25] proposed to decompose the 3D kernel
to a spatial 2D convolution and temporal 1D convolution.
The decomposition of 3D convolution makes the network
easier to be optimized and can boost video recognition
performance. In this work, we utilize two typical 3D CNNs,
i.e., ResNet-3D [22], and I3D [5], as the backbones of VerbNet
and NounNet to extract global motion and appearance
features.

There are also many methods utilizing 2D CNN to tackle
the video recognition task. Simonyan et al. [8] proposed a
two-stream 2D CNN with both RGB frames and optical flow
as input. TSN [11], [26] proposed to process the frames sam-
pled from multiple temporal segments and aggregated all
the predictions for the entire video classification. TRN [18]
developed a temporal relation module to further enhance
the temporal modeling in videos. TSM [17] proposed a
temporal shift module to capture the motion information
and temporal relations.

Moreover, Recurrent Neural Networks (RNNs) are ef-
fective architectures for temporal modeling and have been
found useful for video classification in [6], [27], [28], [29].
Donahue et al. [28] utilized LSTM [30] to aggregate the frame
features extracted by 2D CNN. Zhu et al. [27] proposed a
multi-rate bi-directional GRU to deal with motion speed
variance in videos.

These deep models are designed for third-person video
recognition. They are able to capture motion and scene
information but are not sufficient to locate various small
objects in egocentric videos accurately.

2.2 First-Person Action Recognition
Compared to third-person video recognition, egocentric ac-
tion recognition is more dependent on the modeling of the
interactions between the actor and the environment. It is
important to locate the interacted object and distinguish the
motion of hands.

There are a number of previous works [15], [19], [31]
proposed to extract object features in the videos to provide
a better understanding of local details. Fathi et al. [31]
proposed to learn a hierarchical model that exploits the
consistent appearance of objects, hands, and actions and
refines the object prediction based on action context. Ma et
al. [32] located the object of interest by a hand segmentation
net and fed the cropped regions and optical flow images
to two CNNs for object and action classification, respec-
tively. Baradel et al. [19] proposed to perform object-level vi-
sual reasoning about spatio-temporal interactions in videos
through the integration of object detection networks. More
recently, Wu et al. [15] combined Long-Term Feature Banks
that contains detection features with 3D CNN to improve
the accuracy of object recognition. These methods take the
advantage of the local object information for egocentric
action recognition. However, compared to our method, they
overlook the interactions between the motion information
and the object.

The attention mechanism is efficient in locating the re-
gion of interest on the feature map. Sudhakaran et al. [33]
proposed a Long Short-Term Attention model to focus on
features from relevant spatial parts. They extended LSTM
with a recurrent attention component and an output pooling
component to track the discriminative area smoothly across
the video sequence. Li et al. [34] proposed to generate an
attention map of the hand-object interaction by the guidance
of the gaze information. These methods apply the attention
mechanism on the feature maps produced by 2D/3D CNN.
In this work, we design an attention mechanism for the
object-centric features which fuses different information.

In addition, recently, Kazakos et al. [20] developed
an egocentric action recognition model with multi-modal
temporal-binding. Besides, some researchers [35], [36] focus
on the egocentric action prediction task, which predicts the
near future egocentric action before it occurs. Differently, in
this paper, we focus on egocentric action recognition, which
is to recognize an action given full observations.

2.3 Human-Object Interaction
Reasoning the interaction between human and objects is
relevant to our task because it also requires to find out the
interacting object. Most methods in this field are based on
detection models. For example, Gkioxari et al. [37] predicted
a density map to locate the interacted object and calculated
the action score, with a modified Faster RCNN architecture.
Qi et al. [38] proposed Graph Parsing Neural Networks that
incorporates structural knowledge and deep object detec-
tion model. Fang et al. [39] developed a pairwise body-part
attention model that can learn to focus on crucial parts
for human-object interaction (HOI) recognition. Besides,
some works use human-object interactions to help recognize
actions. Wang et al. [40] proposed to represent videos as
space-time region graphs, which models shape dynamics
and relationships between actors and objects. Sun et al. [41]
developed an Actor-Centric Relation Network for spatio-
temporal action localization.

Most of these HOI techniques rely on the appearance of
the actors, which is absent in egocentric videos. Instead of
the use of the detection features of humans, we pay attention
to the interactions between the motion and the objects.
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2.4 Visual Attention
Attention mechanism can highlight visual regions or lin-
guistic words that are important to the task predictions. It
has been widely used in both computer vision [42], [43],
[44], [45], [46], [47] and natural language processing [48],
[49], [50]. Non-local networks [44] leveraged the non-local
attention operation in spatio-temporal dimension for video
recognition. Squeeze-and-excitation network (SENet) [43]
developed the squeeze-and-excitation block, which intro-
duced the channel-wise attention inside the residual block.
Recently, Linsley et al. [45] improved the SE module by the
global-and-local attention (GALA), which combined global
contextual guidance with local saliency. In addition, they
also introduced a large-scale dataset containing human-
derived attention maps, which can be used to supervise the
attention mechanism to be more accurate and interpretable.
These methods are designed with a self-attention operation.
The feature map used to generate attention weights is also
the target feature where the weights are applied. Differently,
our work concentrates on the interactions in egocentric
videos. We apply a cross attention mechanism between the
motion feature and the object appearance feature.

3 PROPOSED METHOD

3.1 Overview
In this section, we illustrate our network architecture for
egocentric video recognition. We develop three backbone
networks to extract features from the input video: (1) Verb-
Net is a 3D CNN and takes a video clip as input. It is
designed to capture the motion information. (2) NounNet
shares the same architecture with VerbNet. It is trained
to produce a feature that represents object appearance. (3)
Object detection model takes sampled individual frames
as input. We use Faster R-CNN [51] as our detector to
generate object features and location proposals. The output
features and location proposals of the three base models are
fed to the subsequent SAOA module. We aim to enable
effective communication among VerbNet, NounNet, and
object features. The SAOA module generates two feature
vectors, which can be used to predict verb class and noun
class. The overall framework is illustrated in Fig. 2.

3.2 Preliminaries
For each input egocentric video X = {x1, ..., xt} with t
frames, its verb and noun label is yv and yn, respectively.
The action y = (yv, yn) is a combination of the verb and
noun. We use two individual 3D CNNs as the backbones in
our framework, with one for the verb feature extraction and
the other for the noun feature extraction. The extracted verb
feature fv ∈ RT×H×W×C contains the motion information,
where T is the temporal size, H is the height, W is the
width, and C is the channel size of the extracted feature,
respectively. The noun feature fn ∈ RT×H×W×C contains
the global appearance information.

To enhance the global representation through the com-
munication between two branches and enable meticulous
reasoning, we use a pre-trained detection model to provide
detailed locations of objects in the video. Considering the ef-
ficiency, for each video clip, we only use M sampled frames

for detection inference. These frames are sampled around
the center of the input clip for 3D CNNs within a fixed
time duration. The duration is longer than the input clip to
provide more context information. Given a feature map and
a spatial location, RoIAlign [52] first crops the feature map
based on the location and then performs pooling operation
to produce a fix-size feature map. In this work, we use max-
pooling in RoIAlign layer to produce a 1D feature vector.
For object detection model, the output of the RoIAlign
layer is regarded as the feature for each detected object.
To save memory usage and reduce the noisy information,
we only keep top-K object proposals according to their
confidence scores for each sampled frame. Thus, for each
input clip of the 3D CNNs, we have a auxiliary object feature
matrix fo ∈ RN×C1 , which contains N = M × K object
features around the center of the short video clip. For each
object detection feature foi , i ∈ [1 . . . N ], we have an spatial
detection location li ∈ R4. li = (x0i , y0i , x1i , y1i ) representing
a rectangular in 2D space. The object feature matrices fo

are fused with the verb feature fv and noun feature fn by
the following object-centric alignment method. After that,
the verb branch and noun branch are interacted with each
other to produce more discriminative features for action
recognition with a symbiotic attention mechanism.

3.3 Object-centric Feature Alignment
The verb branch and noun branch produce two feature
maps fv and fn by passing a video clip to each backbone.
Due to the intensive camera motion and various distracting
objects in egocentric videos, the useful interaction infor-
mation in these features is hard to distinguish from the
global feature map without any other guidance. To this
end, we develop an object-centric feature alignment method
to generate potential motion and object candidates, which
disentangle the local information from the global feature
maps. Specifically, we leverage object feature matrix fo and
corresponding locations as location-aware information to
inject the local details into the global features. Considering
the different semantic properties of the verb branch and
noun branch, we introduce two mechanisms to integrate fo

with fv and fn:
Global alignment for the noun branch. The object features
and the noun feature both represent the appearance of
the objects in the videos. Considering the small semantic
gap and the complementarity between the local object fea-
tures and the global noun feature, we introduce a direct
global alignment for the noun branch. Note that we have
fo ∈ RN×C1 and fn ∈ RT×H×W×C . We first leverage
a global average pooling (GAP) on fn, and the generated
global feature vector fng is of shape 1 × C . Each detection
feature in fo is then concatenated with the global feature
vector, followed by a nonlinear activation. Formally, the
global alignment operation can be presented as follow:

f n̂i = ReLU(Wnfng
T +Wn

o f
o
i
T + bn), i ∈ [1 . . . N ], (1)

where Wn ∈ RC×C ,Wn
o ∈ RC×C1 , bn ∈ R1×C , foi denotes

i-th detection feature in fo and f n̂i is the aligned noun
feature. We obtain the final noun feature f n̂ ∈ RN×C by
concatenating all f n̂i where i ∈ [1 . . . N ]. Each row in f n̂ rep-
resent a object-centric feature, which integrates the global
noun appearance with an explicit local object information.
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Fig. 2. The proposed SAOA framework. Our framework consists of three feature extractors and one interaction module. The detection model
generates a set of local object features and location proposals. This location-aware information is injected to the two branches by an object-centric
alignment method For the Verb branch, the feature map is locally aligned with the objects by combining the local motion features with corresponding
object detection features. For the Noun branch, the object features are aligned with the global noun representation. Subsequently, the fused features
from each branch interact with the global feature from the other branch by a symbiotic attention mechanism. The two object-centric feature matrices
are first normalized by a cross-stream gating operation. After that, the matrices are attended by the other branch to select the most action-relevant
information. The outputs of SAOA are used to classify the verb and noun, respectively.

Local alignment for the verb branch. Different from global
alignment for the noun branch, we leverage a local align-
ment that integrates the verb feature map and the object
detection features based on their spatial locations. The verb
feature represents the motion information in the videos,
which is quite different from the object features. Global
alignment might not well integrate the two features due
to the large semantic gap. The proposed local alignment
can decompose the global motion information to object-
centric local details. Note that we have fo ∈ RN×C1

and fv ∈ RT×H×W×C . For each object detection feature
foi , i ∈ [1 . . . N ], we have a spatial detection location li ∈ R4.
li = (x0i , y0i , x1i , y1i ) representing a rectangular in 2D space.
We extract the locally aligned verb feature from fvi by the
ROIAlign operation, i.e., fvi = ROIAlign(fv, li). The final
verb feature can be obtained via:

f v̂i = ReLU(W vfvi
T +W v

o f
o
i
T + bv), i ∈ [1 . . . N ], (2)

where W v ∈ RC×C ,W v
o ∈ RC×C1 , bv ∈ R1×C and f v̂i is

the aligned verb feature. The final verb feature f v̂ ∈ RN×C

is obtained by concatenating all f v̂i where i ∈ [1 . . . N ].
The final motion-object paired feature incorporates local
detection features and location-aware motion features.

3.4 Symbiotic Attention
The object-centric alignment integrates the object features
to the verb branch and noun branch. The fused object-
centric feature matrices contain useful local details and
provide potential action-relevant candidates for verb and
noun classification. We propose a symbiotic attention mech-
anism to encourage mutual communication between the

two branches. It further generates a better representation
for classification. As illustrated in Fig. 2, symbiotic attention
includes two stages. First, the fused object-centric features
are re-calibrated by the other branch utilizing a cross-
stream gating mechanism. After that, the normalized feature
matrix is attended by the other branch to aggregate the
most action-relevant information within an action-attended
relation module.

3.4.1 Cross-Stream Gating
Due to the existence of inaccurate detection regions, there
are quite a few disturbing background noises in the features.
Besides, it is important to introduce information from one
branch to guide discrimination in the other branch. For
example, given a video clip that presents the action “cut
potato” but also contains the object “bowl”, the motion
information of “cut” can provide extra guidance for more
accurate recognition that the interacted object is “potato”
rather than “bowl”. To this end, we develop a cross-stream
gating operation to underline the action-relevant informa-
tion from the verb branch and the noun branch.

In noun classification, we generate a gating weight to
normalize the input noun feature matrix f n̂. The gating
weight gn is obtained from the global verb feature:

fvg = GAP (fv), (3)

gn = Sigmoid(Wn
g f

v
g
T + bg), (4)

fncs = gn � f n̂, (5)

where Wn
g ∈ RC×C , fvg ∈ R1×C , bg ∈ R1×C , gn ∈ R1×C ,

fncs ∈ RN×C , and � denotes the element-wise multiplica-
tion. gn is the scaling vector to rescale the noun feature
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Fig. 3. The illustration of symbiotic attention on the noun branch. The
object-centric noun feature matrix is first normalized by the global verb
feature. After that, the feature matrix interacts with the global verb
feature to generate attention weights. The final noun representation is
the weighted sum of the normalized object-centric features.

matrix. After re-calibrating the object-centric noun feature
by the verb feature, the distracting noises can be suppressed
while the action-relevant channels can be enhanced. Simi-
larly, the gated verb feature fvcs can be obtained by:

fng = GAP (fn), (6)

gv = Sigmoid(W v
g f

n
g
T + bvg), (7)

fvcs = gv � f v̂, (8)

where W v
g ∈ RC×C , fng ∈ R1×C , bvg ∈ R1×C , gv ∈ R1×C ,

fvcs ∈ RN×C . Our cross-stream gating mechanism enables
mutual communication between the verb branch and the
noun branch, and it adaptively exploits the correlations of
verbs and nouns. We illustrate on the noun branch in Fig. 3.

3.4.2 Action-attended Relation Module

The calibrated object-centric feature matrix contains the
action-relevant information and implicit guidance about the
spatio-temporal location of an on-going action. To uncover
the relationships among the object-centric features and iden-
tify the most action-relevant information, more meticulous
reasoning is required. Therefore, we develop an action-
attended relation module to examine each potential motion-
object pair and then generate the final representation for
classification.

Specifically, we first propose to assess the relevance
between the global feature and location-aware object-centric
features. Taking the noun branch for example. The global
verb feature and the object-centric noun features are pro-
jected to the same dimension space. The distance between
each noun feature and the verb feature is calculated to rep-
resent their relevance score. After that, we sum the object-
centric features weighted by the relevance coefficients. For-
mally, we perform attention mechanism on the normalized

object-centric noun features fncs ∈ RN×C and the global verb
feature fvg ∈ R1×C ,

an = Softmax(fvgW
a
vW

a
cnf

n
cs

T), (9)

where W a
v ∈ RC×C

4 , W a
cn ∈ RC

4 ×C are projection matrices.
We project the features to a low feature dimension C

4 to
reduce the computational cost of matrix multiplication. We
found C

4 performs well in our experiments. an ∈ R1×N is
the generated attention weights. The final noun represen-
tation fna is produced by the weighted sum of the object-
centric features,

fna = anfncs. (10)

Similarly, we select relevant action features from fvcs with
query fng ,

fva = Softmax(fng W
a
nW

a
cvf

v
cs

T)fvcs. (11)

The final noun feature fna ∈ R1×C and the final verb feature
fva ∈ R1×C . Through the interaction of global feature and
object-centric features, our model selects the most action-
relevant feature for classification.

3.5 Training and Objectives

We use Faster R-CNN with the ResNeXt-101-FPN backbone
as our object detector. Following the training procedure in
[15], we first pre-train the detector on Visual Genome [53]
and then finetune it on EPIC-Kitchens object detection set.
For VerbNet and NounNet, we adopt 3D Resnet-50 [22]
and I3D [5] as our backbones. The two networks are both
initialized with Kinetics pre-trained weights. In the first
stage, we individually train the VerbNet and NounNet with
the corresponding CrossEntropy Loss, i.e., Lv and Ln.

Ln = CrossEntropy(fna , y
n), (12)

Lv = CrossEntropy(fva , y
v). (13)

After the base training stage, we freeze the weights of
the backbone and cascade our SAOA module. The objective
for the second stage is the same as the base training stage,
and only the weights of SAOA are optimized.

4 EXPERIMENTS

4.1 Datasets

EPIC-Kitchens is the largest dataset in first-person vision
so far. It consists of 55 hours of recordings capturing
all daily activities in the kitchens. The performed activi-
ties are non-scripted, which makes the dataset very chal-
lenging and close to real-world data. The dataset con-
tains 39,594 action segments which are annotated with
125 verb classes (e.g.,“cut”,“take”) and 321 noun classes
(e.g.,“potato”,“knife”). The action of each video segment
is defined by the verb-noun pair (e.g., “cut potato”, “take
knife”). We split the original training set to new training
and validation set following [19]. All hyper-parameters are
selected based on the performance on the validation set. We
report the top-1 and top-5 accuracy of the verb, noun, and
action.
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4.2 Experiment Settings

We implement and test our method using PaddlePaddle
and PyTorch. We train our framework in a two-stage op-
timization scheme. Specifically, we firstly pre-train the base
models (VerbNet, NounNet, and the detector) individually.
After that, we optimize the subsequent SAOA module using
extracted features from the base models. Next, we illustrate
the details on how to pre-train the backbones (Backbone
details) and how to extract local object information (Detector
details). Finally, we show the training details of the module
(SAOA details).

Backbone details. We adopt two typical 3D CNNs as our
backbones, i.e., ResNet50-3D [22] and I3D [5]. ResNet50-3D
is built with residual blocks and I3D is based on Inception
architecture. We take the Kinetics [5] pre-trained weights as
the initialization of our backbone model. We then train the
backbone models (VerbNet and NounNet) individually on
the target dataset using 64-frame input clips. The targets for
the VerbNet and NounNet are the verb label and noun label,
respectively. The videos are decoded at 60 FPS for the EPIC-
Kitchens dataset. We adopt the stochastic gradient descent
(SGD) with momentum 0.9 and weight decay 0.0001 to opti-
mize the parameters for 35 epochs. The overall learning rate
is initialized to 0.003, and then it is changed to 0.0003 in the
last 5 epochs. The batch size is 32. During the first training
stage, the input frame size is 224 × 224, and the input
frame is randomly cropped from a random scaled video
whose side is randomly sampled in [224, 288]. We sample
64 successive frames with stride=2 from each segment to
constitute the input clip. The center index of the input clip
is randomly chosen in the segment during training. For the
testing, we sample a center clip per segment. We resize the
clip to the size of 256 × 256 and use a single center crop of
224× 224.

Detector details. Following [15], we use the same Faster
R-CNN to detect objects and extract object features. The
detector is first pre-trained on Visual Genome [53] and then
fine-tuned on the training split of the EPIC-Kitchens dataset.
We use a batch size of 12 and train the model on EPIC-
Kitchens for 180k iterations for the trainval/test split. We
use an initial learning rate of 0.005, which is decreased by a
factor of 10 at iteration 140k and 160k. For the train/val split,
we train the model for 150k iterations, and the learning rate
decays at iteration 116k and 133k. Finally, our object features
are extracted using RoIAlign from the detector’s feature
maps. For each video clip, we perform object detection on a
set of frames that are sampled around the clip center within
a fixed time duration. The time duration is set to 6 seconds
for global alignment and 4 seconds for local alignment. The
sample rate is at two frames per second. For each frame, we
keep the top five features and proposals according to the
confidence scores. Therefore, given a video clip, we obtain
60 detection features during global alignment. In local align-
ment, we obtain 40 detection features and corresponding
locations.

SAOA details. We leverage the pre-trained backbone
models and the detection models as the feature extractors.
During the second-stage training, only the weights of SAOA
are updated. We use SGD with momentum 0.9 and weight
decay 0.0001 to optimize the parameters with batch-size of

TABLE 1
The effectiveness of Symbiotic Attention (SA) for verb prediction and
noun prediction on the EPIC-Kitchens validation set. “ARM” denotes

the Action-attended Relation Module. “CSG” denotes the Cross-Stream
Gating.

Methods Verb Top-1 Noun Top-1
Baseline 54.6 23.8

SA w/o CSG 57.0 32.6
SA w/o Gating 57.2 33.6

SA w/o Cross-Stream 57.4 33.2
SA w/o ARM 56.6 32.7

SA 57.7 34.8

32. For the model equipped with the I3D backbone, we train
the model for 15 epochs. The learning rate is initialized to
0.001 and then reduced to 0.0001 in the last 5 epochs. For
the models based on R-50, we train the model for 15 epochs,
and the learning rate is set to a constant value 0.0001.
Notably, since the detection features have different scales
from the I3D features, the features from the I3D backbone
need to be normalized before concatenation with detection
features in the alignment modules. However, the feature
from the R-50 backbone can be directly fed to the SAOA
module without normalization. The main reason is the
different network types between the detection backbones
(based on residual block) and the I3D model (based on
Inception block). Specifically, the features produced by the
I3D backbone and detection model are l2-normalized before
concatenation. The combined feature is then multiplied by
the l2-norm of the I3D feature to scale the amplitude. A
similar normalization strategy is introduced in [41]. During
the training and testing of SAOA, we utilize the same
temporal sampling strategy during the training and testing
of the backbone. For each input video clip, we resize it to the
size of 256. Then we feed the 64-frame clip to the network
without spatial cropping.

Action calculation The actions are determined by the
pairs of verb and noun. The basic method of obtaining the
action score is to calculate the multiplication of verb prob-
ability and noun probability. However, there are thousands
of combinations and most verb-noun pairs that do not exist
in reality, e.g., “open the knife”. In fact, there are only 149
action classes that have more than 50 samples in the EPIC-
Kitchens dataset [14]. Following the approach in [15], we
re-weight the final action probability by a prior, i.e.

P (action = y) = µ(yv, yn)P (verb = yv)P (noun = yn),
(14)

where µ is the occurrence frequency of action in training set.

4.3 The Effectiveness of SAOA
In this section, we focus on investigating the effectiveness of
the proposed SAOA model. We conduct extensive ablation
studies to evaluate the contributions of each component and
the benefits of different input modalities.

4.3.1 The effectiveness of the symbiotic attention
Ablation studies of SA. The symbiotic attention (SA) con-
sists of two modules, i.e., Cross-Stream Gating (CSG), and
Action-attended Relation Module (ARM). We evaluate each
component on the Epic-Kitchens validation set for both verb
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and noun classification. We use R-50 as the backbone and
RGB data as the input. The results are shown in Table 1.

“Baseline (noun)” uses a single branch backbone for noun
classification. The cross-stream gating module enables mu-
tual communication between the verb branch and the noun
branch and re-calibrates the fused features. We implement
“SA w/o CSG” by performing ARM with the single stream.
Specifically, we utilize the global noun feature to attend
the object-centric matrix produced by the global alignment
module. “SA w/o CSG” obtained 32.6% top-1 accuracy,
which is 2.2% worse than the unified symbiotic attention.
The performance comparison between symbiotic attention
and “SA w/o CSG” validates the effectiveness of the CSG
module. Furthermore, we decompose CSG into two parts,
i.e., Cross-Stream and Gating. We aim to investigate the
impact of each component. “SA w/o Cross-Stream” indicates
using the same stream to gate and attend the noun features.
“SA w/o Gating” indicates utilizing the feature from the
verb stream to attend the object-centric matrix. Specifically,
without the cross-stream operation, the performance drops
from 34.8% to 33.2%, which confirms the importance of the
interaction between the two branches. Without the gating
operation, the performance drops from 34.8% to 33.6%,
which shows the benefits of our gating mechanism in fea-
ture normalization.

We now study the effectiveness of the ARM module.
ARM can select the most action-relevant information from
the object-centric features and explore the relationships in
the spatio-temporal context. The performance drops from
34.8% to 32.7% when ARM is not used, which demonstrates
the effectiveness of ARM in action-relevant information
selection.

For verb classification, the unified SA outperforms the
baseline model by 3.1%. Without the Cross-Stream Gating
(CSG), the performance drops by 0.7%. This demonstrates
the effectiveness of CSG for verb classification. Specifically,
without the gating operation, the performance drops from
57.7% to 57.2%. The performance drops by 0.3% without
the cross-stream operation. Moreover, when ARM is not
used, the performance drops from 57.7% to 56.6%, which
shows the benefits of the action-attended reasoning for verb
classification.
SA outperforms other aggregation operations. We first
study the effectiveness of our symbiotic attention only us-
ing the object detection feature. We directly apply average
pooling and max pooling on the object detection features
for noun classification. We denote the two pooling methods
as “Det Feat+Avg Pooling” and “Det Feat+Max Pooling”,
respectively. The results are shown in Table 2. “SA (Det
Feat only)” performs symbiotic attention on object features
without the integration of the global noun feature. “SA
(Det Feat only)” achieves 30.4% on top-1 accuracy, which
outperforms the average pooling baseline and the max-
pooling baseline by 5.9% and 4.8%, respectively. The result
confirms the superiority of our attention mechanism.

“Noun+Det Feat” is one of the baselines to integrate
noun features and object detection features, which utilizes
the concatenated global noun feature and the max-pooled
object feature for classification. “Noun+Det Feat” introduces
the location-aware object information and uses a simple
fusion method to incorporate the location-aware object in-

TABLE 2
Comparisons between our symbiotic attention and other aggregation
methods for noun prediction on the EPIC-Kitchens validation set.
“Noun” denotes the global feature from NounNet. “Det Feat” is the

location-aware object features.

Methods Top-1 Accuracy
Det Feat+Avg Pooling 24.5
Det Feat+Max Pooling 25.6

SA (Det Feat only) 30.4
Noun + Det Feat 31.2

SA + Local Alignment 33.6
SA + Global Alignment 34.8

formation. Our symbiotic attention outperforms “Noun+Det
Feat” by 3.6% on top-1 accuracy (34.8% v.s 31.2%), which
demonstrates our symbiotic attention is more effective than
the simple aggregation method.

4.3.2 The effectiveness of the global alignment for noun
classification
We first conduct the experiment of performing local align-
ment for the noun branch. The results are shown in the
last two rows in Table 2. Compared to the model using
global alignment for noun classification, the model with
local alignment on the noun feature is 1.2% lower in top-
1 accuracy on the EPIC-Kitchens validation set. The results
show that the global alignment is more proper than local
alignment for the noun classification. As the noun features
and the local detection features are mutually complemen-
tary with less semantic gap, we use global alignment for
the integration of the noun feature and the object detection
feature.

4.3.3 The effectiveness of the local alignment for verb clas-
sification.
In our SAOA framework, the location-aware object informa-
tion is globally aligned with the noun feature for noun clas-
sification. The location-aware information is locally aligned
with the verb feature for verb classification. In this section,
we quantitatively compare our SAOA with the previous
work SAP [21] and demonstrate that the local alignment
approach is better than the global alignment for verb clas-
sification. We use RGB data as inputs, and evaluate the
performance on both R-50 and I3D. The top-1 results are
shown in Table 3.

“Baseline” denotes the single branch verb classification
model. In “Verb+Noun Fusion”, we train a verb classifier
with the concatenation of the global noun feature and
the verb feature. SAP [21] utilizes the global alignment
for verb classification. We observe that “Verb+Noun Fu-
sion” slightly improves the “Baseline” classification model.
It shows a simple fusion method does not help to improve
verb classification. Compared to “Baseline”, SAP obtain a
1.3% improvement on R-50 and a 1.1% improvement on
I3D. This clearly shows that SAP well integrates all three
sources of information. Compared to the combination of
the global motion feature and object features in SAP, our
SAOA leverage a local alignment method that can alleviate
the semantic gap between detection features and motion
features. Our SAOA R-50 model outperforms the SAP R-
50 model by 1.8% on top-1 accuracy. Our SAOA I3D model
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TABLE 3
Ablation study for verb prediction using RGB data as inputs. We evaluate the comparisons two backbones, i.e., R-50 and I3D. The top-1 results

are reported on the EPIC-Kitchens validation set. “Det Feat” denotes the object detection feature. “Det Box” denotes the location of the object
detection proposal.

Methods Verb Noun Det Feat Det Box R-50 I3D
Baseline (RGB) X - - - 54.6 53.2

Verb+Noun Fusion (RGB) X X - - 54.7 53.7
SAP (RGB) X X X - 55.9 54.3

SAOA (RGB) X X X X 57.7 55.1

TABLE 4
Two-stream SAOA for both verb classification and noun classification.

Methods Verb Top-1 Noun Top-1
Our SAOA (RGB+Obj) 55.1 34.7
Our SAOA (Flow+Obj) 56.9 35.0

Our SAOA (RGB+Flow+Obj) 60.4 37.4

also consistently outperforms the SAP I3D model by 0.8%
on top-1 accuracy. Our SAOA significantly outperforms the
“Baseline” model. We obtained 3.1% and 1.9% improvements
for R-50 and I3D, respectively. Compared to the SAP R-50
results on the test sets in Table 5, our SAOA R-50 boosts the
verb top-1 accuracy from 63.2% to 64.0% and from 53.2% to
55.1% on the test seen set and unseen set, respectively. This
demonstrates that our local alignment is effective for verb
classification.

4.3.4 Benefit of the multi-modal fusion
Inspired by the two-stream network [8], [54], we aim to
leverage a late fusion of the predictions from the SAOA
RGB model and the SAOA Flow model to further boost the
performance. We conduct the experiments using I3D as the
backbone, and we report the results for both verb classifica-
tion and noun classification on the EPIC-Kitchens validation
set in Table 4. Our SAOA based on the I3D backbone
with the “RGB+Flow+Obj” inputs achieves the highest per-
formance. “SAOA (RGB+Flow+Obj)” outperforms “SAOA
(RGB+Obj)” and “SAOA (Flow+Obj)” by 3.5% and 4.7% on
top-1 accuracy for verb classification, respectively. For the
noun classification scenario, we observe a 2.7% and a 1.6%
improvements when comparing “SAOA (RGB+Flow+Obj)”
with “SAOA (RGB+Obj)” and “SAOA (Flow+Obj)”, respec-
tively. This shows that our two-stream SAOA framework
is capable of integrating benefits from both RGB and Flow
inputs.

4.4 Comparison with State-of-the-art Results

We compare our model with the following state-of-the-art
methods. TSN [56] is a 2D CNN model for video recogni-
tion. The performance is provided by the dataset authors.
ORN [19] introduces object relation reasoning upon detec-
tion features, while the interactions between the verb and
noun branches are largely ignored. R(2+1)D 34 [55] indicates
the CNN model pre-trained at a very large scale dataset
IG-Kinetics (over 65 million videos). LFB [15] combines
Long-Term Feature Banks (detection features) with 3D CNN
to improve the accuracy of object recognition. “LFB Max”
denotes their best operation on EPIC-Kitchens, which lever-
ages max pooling for feature bank aggregation. LSTA [33] is

an attention-based method, they only report the top-1 action
accuracy on the test set. TBN [20] takes the RGB, Flow, and
Audio modalities as input and performs mid-level fusion
instead of late fusion. SAP [21] is our previous work which
utilizes global alignment to integrate object features for both
verb and noun branches. It also benefits from the symbiotic
attention mechanism, and is trained on the R-50 backbone
with the RGB input modality.

Table 5 summarizes the top-1 and top-5 accuracy for
action, verb and noun predictions on the EPIC-Kitchens
dataset. We develop our approach with R-50 and I3D back-
bone, and we leverage both RGB and optical flow as the
input types for I3D and only RGB frames for R-50. In the
Pre-training column, “Kinetics” indicates the backbone is
pre-trained on Kinetics [5] directly. “Kinetics+ImageNet”
indicates the backbone is pre-trained using the I3D [5]
strategy, which first initializes the 3D CNN with the inflated
weights of the 2D CNN pre-trained on ImageNet [23] and
then trains the 3D CNN on Kinetics. “IG-Kinetics” indicates
the backbone is pre-trained on a large-scale dataset, i.e., IG-
Kinetics [55], with weak supervision.

The first part of Table 5 shows the results of our method
and the baselines on the EPIC-Kitchens validation set. The
proposed SAOA outperforms the baselines by a large mar-
gin on all modalities with both two backbones. Specifically,
with RGB frames as input, our SAOA R-50 significantly
boosts the top-1 accuracy from 19.5% to 25.7% on action
classification. With optical flow as input, our SAOA R-50
outperforms the baseline by 8.1% in top-1 accuracy on ac-
tion recognition, demonstrating that SAOA can incorporate
optical flow input effectively. Compared to I3D baselines,
our SAOA I3D consistently improves the action recognition
performance with different modalities. The remarkable per-
formance gains mainly benefit from the symbiotic attention
mechanism and the integration of the location-aware object
information. Our SAOA R-50 achieves higher top-1 accuracy
than the original SAP on verb prediction and action predic-
tion. The improvement is owing to the integration of the
location-aware alignment for the verb feature. Compared
to the model with single modality input, the two-stream
SAOA achieves higher accuracy, which demonstrates the
effectiveness of the proposed multi-modal fusion strategy.

Our model outperforms the state-of-the-art methods by a
large margin on all three evaluation splits, i.e., the validation
set, the test seen set and the test unseen set. On the vali-
dation set, compared to “LFB Max”, which also utilizes the
detection features, our two-stream SAOA (I3D) on the action
prediction significantly improves the top-1 accuracy from
22.8% to 28.8%. With the same type of input (RGB+Obj),
our SAOA (R-50) still outperforms them by 3.0%. The sig-
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TABLE 5
The comparison with the baseline models and state-of-the-art methods on the EPIC-Kitchens dataset. “Obj” indicates the method leverages the

information from the object detection model. ↑ indicates the improvement of our method compared to the baseline.

Method Input Type Pre-training Actions Verbs Nouns
top-1 top-5 top-1 top-5 top-1 top-5

Validation
ORN [19] RGB+Obj ImageNet - - 40.9 - - -

R(2+1)D-34 [55] RGB IG-Kinetics 22.5 39.2 56.6 83.5 32.7 55.5
LFB Max [15] RGB+Obj Kinetics+ImageNet 22.8 41.1 52.6 81.2 31.8 56.8

SAP (R-50) [21] RGB+Obj Kinetics 25.0 44.7 55.9 81.9 35.0 60.4
Baseline (R-50) RGB Kinetics 19.5 36.0 54.6 80.9 23.8 45.1
SAOA (R-50) RGB+Obj Kinetics 25.7 (6.2↑) 45.9 57.7 82.3 34.8 59.7

Baseline (R-50) Flow Kinetics 16.6 32.8 53.2 79.6 19.7 40.7
SAOA (R-50) Flow+Obj Kinetics 24.7 (8.1↑) 43.0 56.1 81.3 33.6 58.7

Baseline (R-50) RGB+Flow Kinetics 22.0 40.2 59.3 83.3 27.7 50.9
Our SAOA (R-50) RGB+Flow+Obj Kinetics 27.9 (5.9↑) 47.5 61.0 83.8 36.1 61.6

Baseline (I3D) RGB Kinetics+ImageNet 20.5 39.2 53.2 80.4 26.2 51.3
Our SAOA (I3D) RGB+Obj Kinetics+ImageNet 24.3 (3.8↑) 44.3 55.1 80.1 34.7 61.4

Baseline (I3D) Flow Kinetics+ImageNet 17.9 35.6 54.5 79.9 22.7 45.6
Our SAOA (I3D) FLow+Obj Kinetics+ImageNet 25.2 (7.3↑) 43.1 56.9 79.7 35.0 59.7

Baseline (I3D) RGB+Flow Kinetics+ImageNet 23.3 43.1 59.7 83.2 29.9 56.0
Our SAOA (I3D) RGB+Flow+Obj Kinetics+ImageNet 28.8 (5.5↑) 48.4 60.4 82.8 37.4 63.8

Test seen
TSN RGB [56] RGB ImageNet 22.4 44.8 48.0 87.0 38.9 65.5
TSN Flow [56] Flow ImageNet 16.8 33.8 51.7 84.6 26.8 50.6

TSN Fusion [56] RGB+Flow ImageNet 25.4 45.7 54.7 87.2 40.1 65.8
R(2+1)D-34 [55] RGB IG-Kinetics 34.4 54.2 63.3 87.5 46.3 69.6

LSTA [33] RGB+Flow ImageNet 30.2 - - - - -
LFB Max [15] RGB+Obj Kinetics+ImageNet 32.7 55.3 60.0 88.4 45.0 71.8

TBN [20] RGB+Flow Kinetics+ImageNet 30.3 51.8 60.9 89.7 42.9 68.6
TBN [20] RGB+Flow+Audio Kinetics+ImageNet 34.8 56.7 64.8 90.7 46.0 71.3

SAP R-50 [21] RGB+Obj Kinetics 34.8 55.9 63.2 86.1 48.3 71.5
Our SAOA (R-50) RGB+Obj Kinetics 37.0 58.3 64.0 88.0 49.6 73.2
Our SAOA (I3D) RGB+Obj Kinetics+ImageNet 33.8 55.3 63.6 87.4 46.1 70.0
Our SAOA (I3D) Flow+Obj Kinetics+ImageNet 33.4 54.7 63.8 86.8 45.7 69.2
Our SAOA (I3D) RGB+Flow+Obj Kinetics+ImageNet 37.7 59.2 67.6 89.2 47.8 71.8

Test Unseen
TSN RGB [56] RGB ImageNet 11.3 26.3 36.5 74.4 22.6 46.9
TSN Flow [56] Flow ImageNet 13.5 27.5 47.4 77.0 21.2 42.5

TSN Fusion [56] RGB+Flow ImageNet 14.8 29.8 46.1 76.7 24.3 49.3
R(2+1)D-34 [55] RGB IG-Kinetics 23.7 39.1 55.5 80.9 33.6 56.7

LSTA [33] RGB+Flow ImageNet 15.9 - - - - -
LFB Max [15] RGB+Obj Kinetics+ImageNet 21.2 39.4 50.9 77.6 31.5 57.8

TBN [20] RGB+Flow Kinetics+ImageNet 16.8 32.6 49.6 78.4 25.7 50.9
TBN [20] RGB+Flow+Audio Kinetics+ImageNet 19.1 36.5 52.7 79.9 27.9 53.8

SAP R-50 [21] RGB+Obj Kinetics 23.9 40.5 53.2 78.2 33.0 58.0
Our SAOA (R-50) RGB+Obj Kinetics 23.3 41.2 55.1 79.9 32.3 57.1
Our SAOA (I3D) RGB+Obj Kinetics+ImageNet 21.9 42.1 52.9 79.9 31.7 58.5
Our SAOA (I3D) Flow+Obj Kinetics+ImageNet 23.2 42.4 55.5 80.1 32.6 58.1
Our SAOA (I3D) RGB+Flow+Obj Kinetics+ImageNet 25.8 45.1 58.1 82.6 34.4 60.4

nificant improvement mainly benefits from the interactions
between the verb branch, noun branch, and the location-
aware alignment with the location-aware object information.
Although R(2+1)D 34 [55] uses much more videos to train
the model, our best model still outperforms them by 6.3%
in top-1 accuracy for action classification.

On the test seen set and the test unseen set, compared to
the previous state-of-the-art method TBN, our two-stream
SAOA (I3D) outperforms the recognition accuracy by a large
margin. Specifically, the improvement of top-1 accuracy on
the unseen set is 6.7%, 5.4%, and 6.5% for action, verb, and
noun, respectively. Compared to our vanilla SAP model [21],
our two-stream SAOA (I3D) achieves higher accuracy on all
metrics. This demonstrates the effectiveness of the proposed
location-aware alignment and the multi-modal fusion strat-
egy.

4.5 EPIC-Kitchens Action Recognition Challenge 2020

We further verified the effectiveness of our framework
on the EPIC-Kitchens Action Recognition Challenge. Our
method achieved first place on both the seen set and unseen
set. As shown in Table 6, we compare our approach with
the top-3 submissions of Action Recognition Challenge and
three published works on the leaderboard.

Notably, on the unseen test set, our single model (two-
stream SAOA I3D) achieves higher performance than the
TBN [20] Ensemble on all evaluation metrics. We also report
the result of our final submission to the challenge, which
fuses the predictions of six models trained with different
backbones and input modalities. For the final action recog-
nition, our ensemble achieves 42.6% top-1 accuracy on seen
set and 28.0 % on unseen set, which are higher than the
TBN ensemble by 5.9% and 7.0%, respectively. Our result
outperforms the second place submission on seen set by
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TABLE 6
Comparison with the methods on the leaderboard of EPIC-Kitchens Action Recognition Challenge. The results of Attention Clusters are borrowed

from [20].

Method Top-1 Accuracy Top-5 Accuracy Avg Class Precision Avg Class Recall
Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

Seen

Attention Clusters [57] 40.4 19.4 11.1 78.1 41.7 24.4 21.2 9.7 2.5 14.9 11.5 3.4
TSN Fusion [14] 48.2 36.7 20.5 84.1 62.3 39.8 47.3 35.4 11.6 22.3 30.5 9.8

LSTA Ensemble [58] 63.3 44.8 35.5 89.0 69.9 57.2 63.2 42.3 19.8 37.8 41.3 21.2
TBN Ensemble [20] 66.1 47.9 36.7 91.3 72.8 58.6 60.7 44.9 24.0 46.8 43.9 22.9

Sudhakaran (3rd place) 68.7 49.4 40.0 91.0 72.5 60.2 60.6 45.5 21.8 47.2 45.8 24.3
action banks (2nd place) 66.7 49.6 41.6 90.1 77.0 64.1 59.4 45.6 25.4 41.7 46.3 27.0
two-stream SAOA I3D 67.6 47.8 37.7 89.2 71.8 59.3 57.8 42.1 19.6 42.7 44.8 20.7
Our SAOA (1st place) 70.4 52.9 42.6 90.8 76.6 63.6 60.4 47.1 24.9 45.8 50.0 26.9

Unseen

Attention Clusters [57] 32.4 12.0 5.6 69.9 31.8 15.7 17.2 3.9 1.8 11.6 7.9 2.6
TSN Fusion [14] 39.4 22.7 10.9 74.3 45.7 25.3 22.5 15.3 6.2 13.1 17.5 6.5

LSTA Ensemble [58] 49.4 27.1 20.3 77.5 52.0 37.6 31.1 21.1 9.2 18.7 21.9 14.2
TBN Ensemble [20] 54.5 30.4 21.0 81.2 55.7 39.4 32.6 21.7 11.0 27.6 25.6 13.3

action banks (3rd place) 54.6 33.5 27.0 80.4 61.0 46.4 33.6 30.5 15.0 25.3 28.4 18.0
aptx4869lm (2nd place) 60.1 38.1 27.4 82.0 63.8 45.2 33.6 31.9 16.5 29.3 33.9 20.1
two-stream SAOA I3D 58.1 34.4 25.8 82.6 60.4 45.1 38.9 28.7 14.8 28.7 30.1 17.5
Our SAOA (1st place) 60.4 37.3 28.0 83.1 63.7 46.8 35.2 32.6 17.4 29.0 32.8 19.8
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Fig. 4. Qualitative results of our SAOA I3D (Flow) model. The colored boxes show the top-5 detected regions and the numbers are the corresponding
attention weights generated by our action-attended relation module. Red indicates the failure case.

1.0% and 0.6% on unseen set. The final rank is based on
top-1 action accuracy.

4.6 Visualization

In Fig. 4, we show some qualitative results on the EPIC-
Kitchens validation set.

The colored boxes in the figure indicate the top confi-
dent object proposals generated by the pre-trained detection
model. We do not use labels of detected objects since they
are not accurate. Instead, we use the object feature and
location to guide the mutual communication of the verb and
noun branch. The numbers below each image are the values
of ARM attention weights for the five object-centric features.

As illustrated in the first video frame (the left-top one),
the ground truth of this video clip is “take bread”. Our
ARM module generates the highest value for the feature
corresponding to the second box where the interaction hap-
pened. The weights for the fourth and fifth box is similar to
the second box since their locations are very close and also
the boxes also contain the object “bread”. The distracting
objects with the first and third boxes obtain the lowest
scores. For the last figure in the second row, our ARM failed
to produce correct values for the boxes in the noun branch.
This is owing to the large camera motion and occlusion of
the objects. According to the qualitative analysis of the six
examples, we can observe that the attention weights of the
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noun branch (“Verb attend Noun”) are more accurate than
the values of the verb branch (“Noun attend Verb”).

5 CONCLUSION

In this paper, we propose a novel framework named
Symbiotic Attention with Object-centric feature Alignment
(SAOA) for egocentric action recognition. We introduce a
local and global alignment method to integrate the location-
aware object information. Local motion features are pro-
duced to bridge the semantic gap between the motion
feature and the object detection feature. We introduce a
new attention mechanism called symbiotic attention that
interactively leverages sources from the verb branch, the
noun branch, and the location-aware object information.
We evaluate SAOA on two backbones, two modalities,
and the largest egocentric action recognition dataset. Our
experimental results demonstrate the effectiveness of our
framework, and we significantly outperform the state-of-
the-art methods on the largest egocentric video dataset. In
the future, we will explore to suppress background dis-
tractors in the convolutional backbones. It is promising to
leverage other attention mechanisms to integrate multiple
sources of information.
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