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In Visual Dialog, an agent has to parse temporal context in the dialog history and spatial context in the image
to hold a meaningful dialog with humans. For example, to answer “what is the man on her left wearing?”,
the agent needs to: 1) analyze the temporal context in the dialog history to infer who is being referred to as
“her”; 2) parse the image to attend “her”; 3) uncover the spatial context to shift the attention to “her left” and
check the apparel of the man. In this paper, we use a dialog network to memorize the temporal context and an
attention processor to parse the spatial context. Since the question and the image are usually very complex,
which makes it difficult for the question to be grounded with a single glimpse, the attention processor attends
to the image multiple times to better collect visual information. In the Visual Dialog task, the generative
decoder (G) is trained under the word-by-word paradigm, which suffers from the lack of a sentence-level
training. We propose to reinforce G at the sentence level using the discriminative model (D), which aims to
select the right answer from a few candidates, to ameliorate the problem. Experimental results on the VisDial
dataset demonstrate the effectiveness of our approach.
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1 INTRODUCTION

This paper focuses on Visual Dialog [5, 6, 19, 32, 40], in which an agent perceives the environment
visually and communicates with humans in natural language. When presented with an image, a
dialog history, and a question about the visual content of the image, the agent answers the question
in natural language. Unlike Visual Question Answering (VQA) [2, 21, 28, 39], where there are no
follow-up questions, the questions in Visual Dialog are usually temporally ordered with narrative
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A man holding a child next to other adults. Questions AnNswers
glirj1psev. Is the child a boy? No, a girl.
Does sf(e have long hair? No, it's short.
Is there a bow in he\r hair? Yes, it's white.

What is the:jlml/nmfl(eﬁ.wearing? White shirt.
What about the man on the right? Black shirt.
Fig. 1. An example of Visual Dialog. Given an image and its caption, the agent answers a series of questions.
The dialog history is crucial for enabling the agent to conduct a dialog. For example, to answer the last

question, the agent has to infer what “the” and “about” refer to. The agent takes multiple glimpses to attend
to the man on the left given the complex layout of the image and the dialog history.

structures. Visual Dialog posses the ability to hold a meaningful dialog with humans in natural
language about visual content, which benefits a variety of applications.

It is necessary to carefully address two main problems in Visual Dialog. First, how to enable the
agent to effectively parse the temporal context, i.e., the dialog history, to understand the current
question accurately. As shown in Figure 1, the agent has to infer what the two words “the” and
“about” refer to in order to answer the last question. Second, how to attend to the region of interest
in an image given a question and its temporal context, so that the agent has a comprehensive
understanding of the rich visual content.

In this paper, we propose a recurrent attention network for Visual Dialog, which attempts to
address the two problems by an encoder-decoder architecture. For the encoder, we use a dialog
network, which is a Long Short-Term Memory (LSTM) [13], to memorize the temporal context of
the dialog history. The dialog network triggers a question signal that includes the question and
dialog history information. Then the signal is passed to an attention processor.

The attention processor is another LSTM integrated with an attention mechanism [3, 43], to parse
the visual spatial context. Guided by the dialog network signal, the attention processor grounds
the question in the image by iteratively glimpsing the visual content multiple times. Lastly, a state
vector is generated by incorporating the multiple glimpses and passed to the decoder to generate
or select an answer.

There are two decoders in Visual Dialog [5], a generative model (G) which generates answers
in natural language, and a discriminative model (D) to select the best answers from candidates.
A major problem in optimizing G is the lack of appropriate loss function for training. Typical
word-by-word generation is trained to fit an answer at word level. However, two answers can be
semantically different even though they are similar by word to word matching. For example, the
sentence “he is 4 years old” is very similar to the ground-truth “he is 14 years old” by word-level
matching, but the meanings are very different.

To ameliorate the problem, we propose to guide the training of G at sentence level by D. Our
premise is that D is capable of measuring answers at sentence level, its knowledge therefore can be
used as a complement of word-level training for G. In addition, the training of D is more robust
because the training loss can be computed by directly checking whether the selected answers are
exactly the ground truths. Since transferring information from D to G is non-differentiable, we
use Reinforcement Learning [35, 36] to achieve the goal by reward. Experiment on the VisDial
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dataset [5] demonstrates the effectiveness of the attention processor and the training method that
reinforces G by D.

2 RELATED WORK

Vision and Language: There is increased interest in the field of multimodal learning [44] for
bridging computer vision [7, 10] and natural language understanding, such as image captioning
[8, 11, 12, 15, 34, 37, 38, 46], video captioning [17, 24, 31, 42], text-to-image coreference/grounding
[14, 16, 25, 26, 30], Visual Question Answering (VQA) [2, 4, 21, 39, 41, 47] and Visual Dialog
[5, 6, 19, 32, 40]. These tasks typically involve attention mechanisms.

The difference between Visual Dialog and VQA is that the questions in Visual Dialog are depen-

dent on the history and often strongly contextual. In Visual Dialog, a question-answer pair is called
a “fact” and the previous facts constitute “history”. In contrast to [5, 19], Das et al. [6] trained two
agents to communicate in natural language using an “image guessing” game. We follow [5, 19]
by only implementing the answerer agent but evaluating the agent at dialog level, in which no
ground-truth answer is available during evaluation.
Attention in Vision and Language: A number of prior works have applied attention mechanisms
[3, 43] to vision and language tasks [1, 5, 20, 24, 45, 48]. For example, Yang et al. [45] presented
stacked attention networks (SANSs) that learned to answer natural language questions from images.
Lu et al. [20] proposed two co-attention mechanisms (HieCoAtt) for VQA that jointly performed
question-guided visual attention and image-guided question attention. Lu et al. also proposed
a History-Conditioned Image Attentive Encoder (HCIAE) [19] for Visual Dialog that first used
the current question to attend to the exchanges in the history, and then used the question and
attended history to attend to the image, so as to obtain the final encoding. Wu et al. [40] applied
the co-attention mechanism (CoAtt) to Visual Dialog by adding attentions on the dialog history.
Different with these attention mechanisms, our recurrent attention network queries the image by
several glimpses in each question-answering round. The core of the recurrent attention network is
an attention processor that is implemented by an LSTM with an attention mechanism. For each
glimpse, the attention processor takes the attention query and the last attention result as input and
outputs the new attention result. The last state of the LSTM is used to initialize the decoder’s state.
Reinforcement Learning: Many breakthroughs in reinforcement learning have recently been
made. It is generally accepted that there are two families of model-free methods for reinforcement
learning. The first consists of value-based methods, where an action value function is learned
to guide the agent to act in the next time step. One algorithm is Q-learning [35], e.g., DQN[23],
which aims to directly approximate the optimal action value function. In contrast to value-based
methods, the second type are policy-based methods which directly parameterize the policy 7, such
as REINFORCE [36]. Standard REINFORCE updates the policy parameters in the gradient ascent
direction.

REINFORCE has been widely used in computer vision and natural language processing. Mnih et
al. [22] developed the recurrent visual attention model which learns the spatial attention policies
for image classification. Fan et al. [9] applied REINFORCE to efficient video classification. Ranzato et
al. [27] proposed a sequence level training method for recurrent neural networks with REINFORCE.
Rennie et al. [29] used the sequence level training for image captioning. Das et al. used REINFORCE
to train two agents to communicate in natural language for Visual Dialog. Wu et al. [40] used
adversarial REINFORCE with an intermediate reward to encourage the generator to generate
responses as human generated dialogs. In this paper, we use the basic REINFORCE to provide a
sentence-level training for the generator G.
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Fig. 2. The architecture of the proposed recurrent attention network. The encoder (A) consists of a sentence
encoder, a dialog network and an attention processor. The sentence encoder embeds a natural language
sentence to a one-dimensional vector. The dialog network is designed to parse the temporal context of dialog.
Since LSTM is able to model sequences, we leverage an LSTM to model question dependency in a dialog.
According to the order of questions, the dialog network can understand pronouns in a sequence of questions.
Specially, at each question-answering round, the dialog network takes an embedded question as input. Then,
according to its memory, the dialog network emits a signal that integrates the question and the temporal
context. The attention processor grounds the signal by glimpsing the image multiple times and generates a
state vector to the decoder. The given image and caption are used to initialize the state of the dialog network.
The decoder (B) includes a discriminator (D) and a generator (G). The D selects best answers from candidates.
The G directly generates answers in natural language. In addition to the word-by-word training, the G is
further improved by D at sentence level.

3 MODEL

In this section, we describe the details of our recurrent attention network. As shown in Figure 2, the
network consists of an encoder and a decoder. Before the first question-answering round, the agent
is given the image I and a caption c of the image. In each round ¢, the encoder analyzes the dialog
history, integrates the current question g;, observes the image and generates a state vector for the
decoder. According to the state vector, the discriminator decoder D then selects the best answer af
from a set of candidates. The generator decoder G generates an answer a’ for the question g, in

natural language. During training, we also utilize D to improve G by reinforcement learning.

3.1 Encoder

Dialog network: The dialog network is responsible for modeling the temporal context in the
dialog history. Since a dialog is a sequence of question-answer pairs along time, we use an LSTM
to memorize the temporal context. At each question-answering round, the dialog network takes
the question embedding vector as input and generates a signal that integrates the temporal context
and the question. At the beginning of a dialog, we concatenate the image feature and the caption
embedding to initialize the state of the dialog network.

Note that we do not encode the previously generated answers back to the dialog network. The
reasons are as follows: 1) In this paper, we evaluate models with a new protocol, in which the
ground-truth answers are not available to the agent. Since the self-generated answers are not
reliable, we do not use them as “facts”. 2) The generated answers are dependent on the encoder.
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ALGORITHM 1: Recurrent Attention Mechanism

Input :spatial image feature F € Rkaz; signal emitted by dialog network q € RY
attention parameters of the attention processor Wy € RAXS W, € RIXd M e RIS 4 e RY;
Long Short-Term Memory of the attention processor LSTM;
number of attention steps T.

Output:state h.

Initialize: t < 0.

h «— qW7 // initialization for the LSTM hidden state, which is an s-dimensional vector

q«— Hqﬁ // 12 normalization for signal q

while t < T do
te—t+1

@ — vl tanh(WoF + Mh1T) // generate attention vector, whose length is k?

a « softmax(e) // attention weight

f « FaT // apply attention weight to the spatial image feature and generate a attended feature
vector whose length is d

f < H]{W // 12 normalization for attended feature vector

i < concatenate(f, q)
h «— LSTM(i, h)

end

The information that the decoder needs is produced by the encoder. Therefore, there is no need to
encode the previously generated answers back to the dialog network.

Attention processor: The attention processor takes the signal emitted by the dialog network as
input and parses the spatial context in the image to generate a state vector for the decoder. The
attention processor is implemented by an LSTM with an attention mechanism at each glimpse.
The LSTM memorizes the attention history and collects the visual information for the question.
Before the first glimpse, the state of our attention processor is initialized by the signal emitted by
the dialog network. For each glimpse, the attention processor uses the LSTM’s state to attend to the
image. The attention result will be used as input for the next glimpse. Since the LSTM memorizes
the attention history, the attention processor is capable of avoiding repeated attentions for future
glimpses. Figure 3 illustrates how the attention processor grounds a question in an image. Although
sometimes it is difficult to precisely define how many glimpses are actually needed to correctly
answer a question, a single-step attention mechanism is usually not enough.

We use the spatial features F € R>**k from the activation of a Convolutional Neural Network
(ConvNet) layer as the image representations to be attended. Before the model attends the the
spatial feature F € R***¥ we reshape F to R¥¥*, For the VGG-16 network [33], we use the output
of pools layer in which d = 512 and k = 7.

Suppose s is the LSTM hidden state size, a is the length of attention vector and 1 € RF is a
vector with all elements set to 1. The signal emitted by dialog network is g € R?. Our attention
processor contains an LSTM and a few trainable parameters W € RIXS W, € RO M e RXS
v € R We show the details of the recurrent attention mechanism in Alg 1. The a” € R¥ is the
attention weight over the spatial image feature F. Since f (visual features) and q (semantic features)
are from two different feature spaces, we normalize them before concatenating them to a vector.

3.2 Decoder

There are two kinds of models for the decoder in Visual Dialog, e.g., the discriminative model (D)
and the generative model (G). The discriminator aims to select the ground-truth answer from a set
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Fig. 3. lllustration of how the attention processor grounds a question in an image. First, according to dialog
history, the dialog network parse the pronoun “her". Then, based on the output of the dialog network, the
attention processor glimpses the image to answer the question. Fig. 5 demonstrates three example of the
behavior of our attention processor.

of candidates at sentence level, while the generator directly generates a sentence and maximizes
the likelihood of each word in the ground-truth answer. Unlike [5], in which the two models are
trained and evaluated separately, we train D and G jointly. Furthermore, we use D to improve G at
sentence level. In this section, we denote the output state vector of encoder as hy.

Discriminator (D): The discriminator computes dot-product similarities between h, and each of
the embedded answer candidates. As shown in Figure 4 (A), the similarities are fed into a softmax
function during training to compute the posterior probability over the candidates. The network is
trained to maximize the log-likelihood of the ground-truth answer. We denote f(-) as the sentence
encoder and s, as the ground-truth answer, then training D involves minimizing:

Lp = ~log p(f(s:)lho) o« ~f(s,) - ho, M

In this step, both the sentence encoder f and the dialog network are updated. During evaluation,
candidates are ranked based on their posterior probabilities.

Generator (G): We denote the ground-truth answer s, as a sequence of words [wy, wa, ..., wr], and
training G involves minimizing:

Lg = —log p(s;|ho) = —log p(w1, wa, ..., wr|ho)

)

T T
—log ﬂp(wﬁwh Wo,y eeey Wy_1, Bg) = — Z log p(w¢|w1, wa, ..., We—1, ho)

t=1 t=1
Since Eq. (2) aims to maximize the likelihood of each word in the ground-truth answer, we call this
method word-level training. Usually, the term p(w;|wy, ..., w;_1, hg) is modeled by an LSTM that
takes hy as its initial state:

p(lwi, wa, ..., w1, hg), hy = LSTM(w;—1, ;1) (3)
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Fig. 4. The architecture of the decoder. (A) Joint training of discriminator (D) and generator (G). (B) Reinforcing
G by D. Because D can measure answers at sentence level, it can be used to evaluate and guide G’s behavior
during training. Because this process is not differentiable, reinforcement learning is used.

where wy is the start symbol <START>. What’s more, the distribution p(:|wy, wa, ..., wy_1, Bg) is a
parametric function of h,. LSTM first generates the current hidden state h; and then emits the
distribution by a fully-connected layer according to h;. For simplicity, we use 7(:|h;) to denote this
distribution:

ﬂ‘-(.|h[) :p(.|W1aW29"" Wl’—hho) (4)

The current word is generated by w; = argmax,, 7(-|h;). During training, the previous ground-
truth words are given. When conducting the evaluation, the previous ground-truth words are
unavailable and are generated by maximum likelihood estimation (MLE). The logr is used to rank
candidate answers as log-likelihood scores.

The generator and the sentence encoder share the same word embedding matrix. Compared

with discriminative models, generative decoders are more practical for realistic applications but
often achieve lower accuracy than discriminative models.
Reinforcing G by D: The answer to a question is usually not unique. However, training with Eq.
(2) will make the agent focus only on the unique answer provided by the dataset. As a result, the
agent may mistakenly treat semantically similar sentences as wrong answers. Since D can measure
answers at sentence level, we additionally use D to evaluate and guide G’s behavior during training.
Suppose g(-) is the generative function to be learned, the sentence-level training is to :

Ly = =log p(f(g(ho))lho) = ~log p(f(g(ho))| f (s/)) ()

Since f(-) can map semantically similar sentences to similar embeddings, G has the freedom to
generate a more reasonable distribution that does not only fit the unique ground-truth answer in
the training dataset. While f(g(ho)) is non-differentiable, we use reinforcement learning to transfer
this information by reward.

Reinforcement learning is about an agent interacting with an environment, and learning an
optimal policy, by trial and error, for sequence decision making. We consider the sentence generation
as a process of word sequence decision making. At each time step ¢, G selects a word w; from the
word space ‘W according to its internal hidden state h; and policy that maps the hidden state space
to the word space. Here, the policy is 7 in Eq. (4). Then, G updates its state to h;;; and selects
the next word w; ;. After reaching the terminator <END=>, G receives a reward r provided by D,
as shown in Figure 4 (B). The goal of reinforcement learning is to learn the optimal policy that
maximizes such rewards. Suppose s is an answer generated by G and S is the sentence space. The
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objective of reinforcement learning is to maximize:
J(0) = E r(s|ho) (6)
s~8

where 0 represents the parameters of the policy 7 and J(-) is the expected reward under the
distribution of possible sentences. The gradients of the objective are:

T
Vo) = E Vologn(slho)r(slho) = E_| > Vologm(wilhe)r(slho) Q)
t=1

The gradients can be backpropagated to G’s LSTM and the entire encoder via hy.
Since hy ~ f(s,), we use s, to replace hy. Then the reward function is:

r(slsr) = f(s)- f(sr) (8)
The reward will encourage (r(s|s,) > 0) or discourage (r(s|s,) < 0) the generation of s. Furthermore,
s1 will be encouraged more than s, when r(s1|s;) > r(sz|s;).

Since the dimension of the possible sentence space S can be very high, it is impossible to optimize
Eq. (2) directly. Following REINFORCE [36], we use Monte Carlo sampling to approximate the
policy gradients:

wy ~ 7(-|hy) )

Note that the word-level training also optimizes the policy 7 and can significantly reduce the
sentence space S by forcing G to generate grammatically correct answers. Therefore, the word-level
training can be considered as supplementary to the sentence-level training.

In training, we minimize the following hybrid loss:

L=aLp+ fLc —yJ (10)

where @, ff and y are three positive factors.

4 EXPERIMENTS

Dataset: We evaluate our proposed approach on the VisDial v0.9 dataset [5], which contains 83k
dialogs on COCO-train and 40k on COCO-val images. Each dialog contains one image, one caption
and 10 question-answering rounds. The captions are from the COCO dataset [18]. The questions
and answers are collected by pairing two questioners and answerers on Amazon Mechanical Turk
to chat about an image. The questioners see only the image captions and the image remains hidden
to them. Their task is to ask questions about the hidden images to ‘imagine the scenes better’.
According to the image and caption, the answerers answer questions asked by their chat partner.
Every question is coupled with 100 candidate answer options, of which only one option is correct.
Evaluation Protocol: In [5], the agent takes the ground-truth answers of all previous questions
as input information to generate an answer for a new question. When testing the ¢-th round of
a dialog, all ground-truth answers from round 1 to round ¢ — 1 are provided to the system. In
addition, for generator, candidate answer options are used as teacher forcing for each question. In
real-world applications, however, the ground truth answers are always not available. Therefore, we
adopt a different evaluation setting from [5]. The difference is that the ground-truth answers to
the history questions are not provided to the agent. The agent uses the answers generated (G) or
selected (D) by itself or does not use them. The models are asked to sort the 100 candidate answer
options for each question. D uses posterior probabilities to rank these answer options, and G uses
the log-likelihood of these options for ranking. The model is evaluated on the following retrieval
metrics: (1) mean rank of human response (lower is better), (2) recall@k, i.e., existence of the human
response in top-k ranked responses (higher is better), and (3) mean reciprocal rank (MRR) of the
human response (higher is better).
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Implementation Details: All LSTMs in the model are single layer with 512d hidden state. For
the sentence encoder, we adopt the dynamic recurrent neural network structure. We use VGG-16
[33] to extract image features. Images are resized to 224 x 224 pixels. We use the output of pool5 (7
X 7 % 512) for attention and the output of fc7 (4096) to initialize the dialog network’s state. The
vocabulary consists of 8,836 words and each word occurs at least five times in the training dataset.
We use the Adam optimizer with the learning rate of 0.001 and clip the gradients by 5.0. Consistent
with [5], we split the 83k training dataset into 82k for train, 1k for val, and use the 40k as test.
Each model is trained for 80 epochs. We have implemented our algorithm using both PaddlePaddle
and TensorFlow, which have shown similar performance. In this paper, we report the TensorFlow
accuracy.

4.1 Evaluation of the attention processor

To evaluate the attention processor, we design three baseline models in this section. We train and
evaluate the discriminative model and the generative model separately. The baseline models are as
follows,

¢ Plain Dialog Network (PDN): Only the sentence encoder and the dialog network are
included for each question-answering round. The output of the dialog network is directly
used to initialize the decoder’s state.

¢ Image Dialog Network (IDN): The image information is added on the basis of the Plain
Dialog Network for each question-answering round. The output of the dialog network and
the image feature are first normalized and then concatenated to initialize the decoder’s state.

o Attention Dialog Network (ADN): The image information in the Image Dialog Network
is replaced by the attention mechanism as Alg. 1: 1-1. The output of the dialog network
and attended image feature are also normalized before being concatenated to initialize the
decoder’s state.

For the above baseline models, at the beginning of a dialog, the image feature and text caption
embedding are concatenated to initialize the state of the dialog network. For the proposed attention
processor, the number of attention steps T is set to {1, 2, 3, 4, 5} respectively. The difference between
the ADN model and the proposed attention processor with T=1 is that the attention processor
includes an additional LSTM. Correctly, the ADN model outputs the attention result f concatenated
with the output of the dialog network q. The attention processor outputs the state of the LSTM, i.e.,
the h.

We run experiments at three times. Mean and standard deviation are reported in Table 1. Among
the three baselines, ADN achieves the highest accuracy. IDN achieves the second highest accuracy.
PDN achieves the lowest accuracy. For example, for the discriminative model, the recall@1 are 42.75,
42.96 and 43.56, respectively. The proposed recurrent attention mechanism significant outperforms
the traditional attention mechanism (ADN), especially with the discriminative model. For example,
for the discriminative model, our attention processor with T = 1 achieves 46.22 at recall@1, which
outperforms ADN (43.56) by 2.66.

Forth, for our attention processor with the generative model, accuracy is improved with the
increase in the number of attention steps. Our model usually achieves best accuracy when T = 3 or
T =4

To further research the attention processor’s behavior, we illustrate a few attention examples
in Figure 5. In this experiment, we set T = 3. First, we observe from Attention 1 that our dialog
network is capable of correctly parsing the temporal context in dialog. In the top example, the
agent knows that “on her left” means “on the girl’s left”. In the bottom example, the agent knows
that “it” means “the bus”. Second, the attention processor exhibits different behavior according to
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Table 1. Experimental results on the VisDial dataset. The number of attention steps T for the recurrent
attention network are set to {1, 2,3, 4, 5}. joint: D and G jointly training. att: recurrent attention network. RL:
reinforce G by D.

Models i MRR R@1 R@5 R@10 Mean
g PDN 0.4993+0.0003 40.96+0.03 58.32+0.01 60.98+0.08 22.85+0.02
7‘8 IDN 0.5023+0.0008 41.72+0.06 58.44+0.01 61.26+0.11 22.81+0.07
= ADN 0.5035+0.0002 42.00+0.10 58.56+0.03 61.32+0.03 22.75+0.01
N PDN 0.5003:£0.0004 40.93+0.01 58.47+0.12 61.13+0.05 22.83+0.02
g IDN 0.5026:£0.0005 41.81+0.05 58.77+0.11 61.35+0.04 22.7420.04
- ADN 0.5034:+0.0002 42.17+0.08 58.640.07 61.430.02 22.7140.08
PDN 0.5002+0.0008 41.04+0.04 58.52+0.05 61.12+0.12 22.76+0.01
= IDN 0.5032:0.0010 41.93+0.12 59.02+0.09 61.48+0.06 22.7540.02
ADN 0.5045+0.0003 42.04%0.05 59.09+0.04 61.70+0.05 22.6420.02
= PDN 0.5009+0.0003 41.15+0.13 58.57+0.09 61.20+0.10 22.75+0.04
i IDN 0.5044+0.0005 42.09+0.05 59.04+0.14 61.610.08 22.73+0.06
B ADN 0.5053:£0.0007 42.17+0.03 59.13+0.07 61.78+0.12 22.66+0.03
T=1 0.5028+0.0003 41.77+0.04 58.33+0.03 60.74+0.04 22.81+0.02
3 T=2 0.5092:+0.0002 42.6120.00 58.83+0.02 61.3420.03 22.7240.05
g = T=3 0.5105+0.0001 42.79+0.03 58.90+0.02 61.53+0.03 22.62+0.02
o T=4 0.5098:£0.0004 42.70+0.03 58.77+0.05 61.45+0.03 22.67+0.01
'ﬁ; T=5 0.5093+0.0002 42.59+0.09 58.74+0.03 61.29+0.02 22.70+0.04
g T=1 0.5129+0.0005 43.15+0.05 58.97+0.10 61.55+0.05 22.56+0.04
8 *é T=2 0.5132+0.0002 43.23+0.04 59.07+0.02 61.58+0.03 22.47+0.02
< T=3 0.51350.0002 43.23+0.03 59.08+0.07 61.62+0.03 22.40+0.03
3;; T=4 0.5140+0.0004 43.26+0.02 59.13+0.04 61.73+0.09 22.28+0.07
T=5 0.5132+0.0003 43.15+0.03 59.02+0.04 61.52+0.07 22.49+0.04
T=1 0.5131+0.0003 43.18+0.01 58.95+0.08 61.55+0.08 22.53+0.03
. T=2 0.5136+0.0003 43.26%0.05 59.13+0.02 61.57+0.05 22.48+0.05
j‘g T=3 0.5141+0.0002 43.29+0.04 59.15+0.03 61.64+0.02 22.41+0.02
E T=4 0.5138+0.0002 43.29+0.07 59.18+0.04 61.70+0.00 22.34+0.01
T=5 0.5133+0.0001 43.17+0.03 58.90+0.02 61.39+0.04 22.52+0.02
3 T=1 0.5142+0.0004 43.26+0.02 59.15+0.05 61.8200.02 22.40+0.03
i T=2 0.5145+0.0003 43.37+0.03 59.29+0.09 61.88+0.08 22.37+0.03
£ T=3 0.5148+0.0001 43.39+0.05 59.38+0.02 61.97+0.06 22.3240.04
f‘ T=4 0.5154+0.0002 43.42+0.02 59.31+0.03 62.04+0.05 22.24+0.02
B T=5 0.5140+0.0001 43.32+0.01 59.08+0.03 61.87+0.01 22.4120.04
g PDN 0.57010.0010 42.75+0.02 74.27+0.02 83.17+0.07 6.1620.02
f‘g IDN 0.5727+0.0007 42.96+0.01 74.16+0.02 83.45+0.13 6.03+0.01
= ADN 0.5832+0.0005 43.560.02 74.8420.05 83.9420.05 5.96+0.03
N PDN 0.5703%0.0007 42.80+0.04 74.33+0.00 83.66+0.08 6.13£0.02
g IDN 0.5725+0.0012 42.95+0.04 74.17+0.02 83.510.05 6.050.04
- = ADN 0.5836:£0.0008 43.73+0.07 74.98+0.05 84.03+0.03 5.92+0.05
3 T=1 0.6011+0.0004 46.22+0.02 76.99+0.04 86.11+0.02 5.18+0.02
f T=2 0.6007-£0.0004 46.100.01 76.78+0.02 86.05+0.03 5.22+0.03
2 =] T=3 0.6004:£0.0006 46.1240.05 76.40+0.07 85.90+0.06 5.27+0.02
ki T=4 0.6004+0.0011 46.140.04 76.47+0.01 85.9410.03 5.2410.01
§ T=5 0.5998:£0.0006 46.040.03 76.100.03 85.8420.07 5.3020.04
3 T=1 0.6025+0.0003 46.33+0.03 77.07+0.11 86.260.05 5.12+0.04
A E T=2 0.6040+0.0005 46.52+0.04 77.10+0.04 86.34+0.07 5.10+0.03
< T=3 0.60240.0002 46.45+0.04 76.9120.02 86.140.12 5.18+0.02
£ T=4 0.6006:£0.0004 46.19+0.03 76.80+0.02 86.09+0.08 5.20+0.00
T=5 0.5998:£0.0006 46.0620.02 76.6420.07 86.1120.06 5.2240.04
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Caption: The man is walking behind the concession bus. Question: What color is it (the bus) ? Generated answer: Blue and white. Ground truth: White with blue trim on the bottom.

Fig. 5. Visualization examples of how the attention processor grounds questions in images.

different questions. In the top example, the attention gradually moves from the middle between
“the girl” and “the man on her left” to “the man on her left”, and finally focuses on the body of “the
man on her left”. For the middle example, the attention processor counts the bulls in the image
sequentially. In the bottom example, the attention moves from the tail of the bus to the head to
check the color.

4.2 Evaluation of the Entire Model

In this section, we evaluate the training method proposed in Eq. (10). In Section 4.1, we find that D
converges faster than G. Therefore, we set @ = 0.5 and = 1.0. We first evaluate the discriminator-
generator joint training method (y = 0) and then evaluate the proposed sentence-level training
which reinforces G by D (y # 0). The number of attention steps T is tested from {1, 2, 3, 4, 5}.

The results of the discriminator-generator joint training are shown in Table 1. Compared with
separate training (“att”), this method, although simple, significantly improves the accuracy for both
D and G. For the generative model, the best recall@1 by separate training (“att”) is 42.79 while is
43.26 by joint training (“att+joint”).

Next, we evaluate the sentence-level training method. In this experiment, we set y = 0.1. Since
this method aims to improve G and has little influence on D in the experiment, we only show
the generative model’s results in Table 1. As we can see from the results, sentence-level training
(“att+joint+RL”) further improves the accuracy on the basis of discriminator-generator joint training,
especially for recall@5 and recall@10. For the generative model with three attention steps, the G
improves 0.30 (“att+joint”) at recall@5.

4.3 Comparison with other models

We have proposed an encoder-decoder model for Visual Dialog. For the encoder, we use a dialog
network to memorize the temporal context of the dialog history and an attention processor to
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Caption + Questions GTs Generations Image Caption + Questions GTs Generations
Several cars that are used for race cars sitting on the grass. ‘B =4 Aman in cycling gear next to his motorcycle.
1. Isthisin color? Yes. Yes. 1. Isthe cycling gear leather? Yes. Yes.
2. Are there any people Icansee5. Yes. 2. Isitcolored leather? Yes. Yes.
3. How many cars? 4. 4. 3. Does he have a helmet? Yes, kept over the bike's handle. Yes.
4. Can you see the sky? No.  No. 4. What color is his leather? ~ Gear is black & red in color.  Black.
5. Do the cars have numbers? No. Yes. 5. What color is his helmet? Helmet is black. Black
6. Are the drivers visible? No.  No. 6. What color is his bike? Bike is red in color. Black
7. Any children? No, it'sa car show.  No. 7. Isitina parking space? Looks like some sidewalk.  Yes.
8. Is this America? No.  No. . Can you see the brand of bike? Notsure as itis far. No.
9. Any flags? No. No. 9. Are there people in the photo?  No other people visible. No.
10. Are the people dressed casually? Yes. Yes. % 10. Are there any animals? No animals seen.  No.
A pizzassits half eaten on a plate. Aman and a woman sitting on a subway train.
1. Isthe photo in color? Yes.  Yes. 1. Isthisacouple? Yes. Yes.
2. Isitaprofessional photo? No. No. 2. Are they young or old? Young.  Young.
3. Isitwell lit? Yes with daylight.  Yes. 3. How are they dressed? Casual.  Casual.
4. What color is the plate? It's black i think its a tary. ~ White. 4. Avre there other passengers? Can'ttell.  No.
5. What's the plate made out of? Plastic maybe.  Wood 5. Is anyone standing? No. No.
6. Whatkind of pizza?  Pepperoni and olive and mushroom.  Cheese. 6. Can you see outside the window? No.  Yes.
7. Was the pizza a triangular shape? Theslicesare.  Yes. 7. Does it seem to be underground? Maybe.  No.
8. lIsita half of a whole pizza? Half is eaten.  Yes. 8. Isitwell lit? Yes.  Yes.
9. Isitathin crust pizza? No, thick.  Yes. 9. Can you see signs on the wall? Yes. No.
10. Soit's not a half of a sliced pizza? Yes it's half eaten.  Yes. 10. Does it say the city? Maps.  No.

A small elephant climbing over a log in an enclosure. A small zebra appears to be eating something on the ground.

1. Isthere only the 1 young elephant? Yes. Yes. 1. What color are the sheep? Beige.  White.
2. What's the ground look like is it grassy? Cement. Dirt. 2. Where are they? Hill.  In the wild.
3. How big is the enclosure? Notsure. It's small 3. Istherea fence? rock fence.  Yes.

4. Isitsmall? Not sure. Yes. 4. s there water? No.  No.

5. What is the enclosure made of? Metal fence. Wood. 5. Do the sheep have a lot of wool? Yes.  Yes.

6. Is this indoors? No. No. 6. Do they look healthy? Yes.  Yes.

7. Are there any people in the image? No. No. 7. Are they dirty? No. No.

8. Do you see a water source? No. No. 8. Are there trees? Yes.  Yes.

9. Isthisa close up of the elephant? No. Yes 9. What color is the grass? Green.  Green.
10. What else do you see? Nothing. A rock wall 10. How is the weather? Isitsunny.  Cloudy.

Fig. 6. Examples of generated answers by our model. The red color indicates the generated answer is different
with the ground truth.

Table 2. Comparison with Late Fusion (LF) Encoder, Hierarchical Recurrent Encoder with Attention (HREA),
Memory Network (MN) and History-Conditioned Image Attentive Encoder (HCIAE).

Model Generative Model Discriminative Model

MRR R@1 R@5 R@10 Mean MRR R@1 R@5 R@10 Mean
LF [5] 0.5033 41.69 58.39 60.94 22.87 0.5794 44.00 74.03 83.11 6.09
HREA [5] 0.5032 41.80 58.20 60.77 22.52 0.5762 43.37 74.72 84.09 5.71
MN [5] 0.5004 41.41 58.19 60.64 23.18 0.5763 43.79 73.76 83.80 6.23
HCIAE-G-DIS [19] 0.5094 42.21 59.01 61.33 22.38 - - - - -
HCIAE-D-NP-ATT [19] - - - - - 0.5905 4498 76.11 85.12 5.63
Ours 0.5148 43.39 59.38 61.97 2232 | 0.6024 4645 7691 86.34 5.10

glimpse the image. For the decoder, we train the discriminator and generator jointly. We further
use discriminator to guide the generator at the sentence level. Experiments show that our model
significantly improves accuracy compared to the LF, HREA, MN and HCIAE models.

We compare our model with three models proposed in [5]. They are Late Fusion (LF) Encoder,
Hierarchical Recurrent Encoder with Attention (HREA) and Memory Network (MN). We implement
the three models by ourselves and apply it to our setting. As strong competitors, we also include
History-Conditioned Image Attentive Encoder (HCIAE) [19] models. For HCIAE models, the
HCIAE-G(enerative)-DIS(criminator), which is trained under the mixed MLE and discriminator
loss (knowledge transfer), is the best generative model, while the HCIAE-D(iscriminative)-NP(air)-
ATT(entive), which is trained under the n-pair discriminative loss and using the self-attentive
answer encoding, is the best discriminative model. Therefore, we use these two models to represent
HCIAE models. Note that, we do not directly compare our results to those numbers reported in
[5, 19] because we do not use the history ground-truth answers for evaluation. Instead, as we
illustrated in the evaluation protocol, we use the answers selected or generated by the models. For
our model, we set T = 3 since glimpsing three times achieves best performance on the validation
dataset. The results are shown in Table 2.
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Image Caption + Questions GTs Ours With GT Answers Without GT Answers
Aman holding a child next to other adults. MN HCIAE-G-DIS | MN HCIAE-G-DIS
Is this a family photo? Yes. Yes. Yes. Yes. Yes. Yes.

Is everyone dressed up? Yes. Yes. Yes. Yes. Yes. Yes.

How many adults? 3. 3. 4 4 4 4

What is the child wearing? Red shirt. Red shirt.  Red shirt. Red shirt. Black shirt I can’t tell.
Are the outfits matching? No. No. No. No. No. No.

Is the child a boy? No, a girl. No, agirl.  No. No. No. No.

Does she have long hair? No, it's short. No. No. No. No. No.

Is there a bow in her hair? Yes, it's white. Yes. No. No. No. No.

‘What is the man on the left wearing? White shirt, blue jeans. White shirt. White shirt White shirt. White shirt. White shirt.
A group of people sitting around a table eating pizza.

Are these friends? Yes. Yes. Yes. Yes. Yes. Yes.

Is this inside? Yes. Yes. Yes. Yes. Yes. Yes.

Are they facing the camera? Yes. Yes. Yes. Yes. Yes. Yes.

Is this a restaurant? Yes. Yes. Yes. Yes. Yes. Yes.

Are they smiling? Yes. Yes. No. Yes. No. Yes.

Is this in color? Yes. Yes. Yes. Yes. Yes. Yes.

Avre there more than 10? No. No. No. No. No. I think so.
Are they in their 20s? 30's. Yes. Yes. Maybe. Yes. Maybe

Is it daytime? Yes. Yes. No. Yes. No. Yes.

Fig. 7. Examples of generated answers with and without ground-truth answers. The red color indicates the
generated answer is different with the ground truth. Since our framework do not use answers, there is no
difference between whether to use ground-truth answers or not. For other methods, leveraging ground-truth
answers can help agent to generate more reasonable answers. However, ground-truth answers are not available
in practice.

Table 3. Comparison with other methods with the evaluation protocol proposed in [5], in which the ground-
truth answers to the history questions are available to the agent.

Model Generative Model Discriminative Model

MRR R@1 R@5 R@10 Mean MRR R@1 R@5 R@10 Mean
LF [5] 0.5204 42.04 61.78 67.66 16.84 0.5807 43.82 74.68 84.07 5.78
HER [5] 0.5237 42.29 62.18 67.92 17.07 0.5846  44.67 74.50 84.22 5.72
HREA [5] 0.5242 4229 62.33 68.17 16.79 0.5868 44.82 74.81 84.36 5.66
MN [5] 0.5259 42.29 62.85 68.88 17.06 0.5965 45.55 76.22 85.37 5.46
SAN-QI [45] - - - - - 0.5764 4344 74.26 83.72 5.88
HieCoAtt-QI [20] - - - - - 0.5788  43.51 74.49 83.96 5.84
AMEM [32] - - - - - 0.6160 47.74 78.04 86.84 4.99
HCIAE-G-DIS [19] 0.5467 4435 65.28 71.55 14.23 - - - - -
HCIAE-D-NP-ATT [19] - - - - - 0.6222 4848 78.75 87.59 4.81
Ours 0.5450 4440 65.23 70.88 14.54 0.6227 48.63  78.62 87.49 4.95

As can be seen from the results, our method outperforms all three models in [5]. For example,
for the generative model evaluated by recall@1, our model outperforms LF by 1.7, HREA by 1.59
and MN by 1.98. Our model also outperforms the two HCIAE models in [19]. For example, for the
generative model evaluated by recall@1, our model outperforms HCIAE-G-DIS by 1.18. For the
discriminative model evaluated by recall@1, our model outperforms HCIAE-D-NP-ATT by 1.47.

We present some examples of answers generated by our model in Figure 6. Occasionally, the
model generates more accurate answers than the ground truths. For the example in the “elephant”
dialog, when asked “what else do you see?”, the model generates “a rock wall”, which is more
accurate than the ground truth “nothing”. For the example in the last dialog, when asked “how is
the weather”, the model generates “cloudy”, which is more accurate than the ground truth “it’s
sunny”.

We also compare our model with other methods with the evaluation strategy proposed in [5], in
which the ground-truth answers to the history questions are available to the agent. Apart from the
LF, HERA, MN and HCIAE models, we also include the Hierarchical Recurrent Encoder (HER) [5],
Stacked Attention Network with Question and Image (SAN-QI) [45], Hierarchical Question-Image
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Co-Attention (HieCoAtt-QI) [20], AMEM [32] and Co-Attention [40] models in this experiment.
Numbers are exactly as reported in prior works. In this experiment, the number of glimpses is
set to 3. The results are shown in Table 3. Compared with Table 2, the ground-truth answers to
the history question help the agent to answer the future questions. For example, the ground-truth
history answers help HCIAE-D-NP-ATT to reduce mean rank by 1.16. Since the HCIAE [19] and Co-
Attention [40] models bravely exploit the ground-truth question-answer pairs, i.e., facts, and apply
attention mechanisms to the facts, they achieve high accuracies. However, our model considers
the answers unreliable and does not well uses them, thus it does not outperform the HCIAE and
Co-Attention models in this experiment.

5 CONCLUSION

We have proposed an encoder-decoder model for Visual Dialog. For the encoder, we use a dialog
network to memorize the temporal context of the dialog history and an attention processor to
glimpse the image. For the decoder, we train the discriminator and generator jointly. We further
use discriminator to guide the generator at the sentence level. Experiments show that our model
significantly improves accuracy compared to the LF, HREA, MN and HCIAE models.

Acknowledgement. The work of Yi Yang was in part supported by ARC DP200100938. The work
of Fei Wu was in part supported by NSFC61625107.

REFERENCES

[1] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. 2016. Neural Module Networks. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. 39-48.
https://doi.org/10.1109/CVPR.2016.12

[2] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, and Devi Parikh.
2015. VQA: Visual Question Answering. In 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago,
Chile, December 7-13, 2015. 2425-2433. https://doi.org/10.1109/ICCV.2015.279

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural Machine Translation by Jointly Learning to
Align and Translate. arXiv abs/1409.0473 (2014).

[4] Yalong Bai, Jianlong Fu, Tiejun Zhao, and Tao Mei. 2018. Deep Attention Neural Tensor Network for Visual Question
Answering. In Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018,
Proceedings, Part XII. 21-37. https://doi.org/10.1007/978-3-030-01258-8_2

[5] Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh, Deshraj Yadav, José M. F. Moura, Devi Parikh, and Dhruv
Batra. 2017. Visual Dialog. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu,
HI, USA, July 21-26, 2017. 1080-1089. https://doi.org/10.1109/CVPR.2017.121

[6] Abhishek Das, Satwik Kottur, José M. F. Moura, Stefan Lee, and Dhruv Batra. 2017. Learning Cooperative Visual Dialog
Agents with Deep Reinforcement Learning. In IEEE International Conference on Computer Vision, ICCV 2017, Venice,
Italy, October 22-29, 2017. 2970-2979. https://doi.org/10.1109/ICCV.2017.321

[7] Yuhang Ding, Hehe Fan, Mingliang Xu, and Yi Yang. 2020. Adaptive Exploration for Unsupervised Person Re-
Identification. ACM Transactions on Multimedia Computing, Communications, and Applications TOMCCAP 16, 1 (2020).
https://doi.org/10.1145/3369393

[8] Jeft Donahue, Lisa Anne Hendricks, Marcus Rohrbach, Subhashini Venugopalan, Sergio Guadarrama, Kate Saenko, and

Trevor Darrell. 2017. Long-Term Recurrent Convolutional Networks for Visual Recognition and Description. IEEE

Trans. Pattern Anal. Mach. Intell. 39, 4 (2017), 677-691. https://doi.org/10.1109/TPAMI.2016.2599174

Hehe Fan, Zhongwen Xu, Linchao Zhu, Chenggang Yan, Jianjun Ge, and Yi Yang. 2018. Watching a Small Portion

could be as Good as Watching All: Towards Efficient Video Classification. In Proceedings of the Twenty-Seventh

International Joint Conference on Artificial Intelligence, [JCAI 2018, July 13-19, 2018, Stockholm, Sweden. 705-711.

https://doi.org/10.24963/ijcai.2018/98

[10] Hehe Fan, Liang Zheng, Chenggang Yan, and Yi Yang. 2018. Unsupervised Person Re-identification: Clustering and

Fine-tuning. ACM Transactions on Multimedia Computing, Communications, and Applications TOMCCAP 14, 4 (2018).
https://doi.org/10.1145/3243316

[11] Hao Fang, Saurabh Gupta, Forrest N. Iandola, Rupesh Kumar Srivastava, Li Deng, Piotr Dollar, Jianfeng Gao, Xiaodong

He, Margaret Mitchell, John C. Platt, C. Lawrence Zitnick, and Geoffrey Zweig. 2015. From captions to visual concepts

—
Ne)
—

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.


https://doi.org/10.1109/CVPR.2016.12
https://doi.org/10.1109/ICCV.2015.279
https://doi.org/10.1007/978-3-030-01258-8_2
https://doi.org/10.1109/CVPR.2017.121
https://doi.org/10.1109/ICCV.2017.321
https://doi.org/10.1145/3369393
https://doi.org/10.1109/TPAMI.2016.2599174
https://doi.org/10.24963/ijcai.2018/98
https://doi.org/10.1145/3243316

Recurrent Attention Network with Reinforced Generator for Visual Dialog 111:15

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

and back. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015.
1473-1482. https://doi.org/10.1109/CVPR.2015.7298754

Q. Feng, Y. Wu, H. Fan, C. Yan, M. Xu, and Y. Yang. 2020. Cascaded Revision Network for Novel Object Captioning.
IEEE Transactions on Circuits and Systems for Video Technology (2020). https://doi.org/10.1109/TCSVT.2020.2965966
Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long Short-Term Memory. Neural Computation 9, 8 (1997), 1735-1780.
https://doi.org/10.1162/neco0.1997.9.8.1735

Ronghang Hu, Marcus Rohrbach, and Trevor Darrell. 2016. Segmentation from Natural Language Expressions. In
Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings,
Part 1. 108-124. https://doi.org/10.1007/978-3-319-46448-0_7

Andrej Karpathy and Li Fei-Fei. 2017. Deep Visual-Semantic Alignments for Generating Image Descriptions. I[EEE
Trans. Pattern Anal. Mach. Intell. 39, 4 (2017), 664-676. https://doi.org/10.1109/TPAMI.2016.2598339

Chen Kong, Dahua Lin, Mohit Bansal, Raquel Urtasun, and Sanja Fidler. 2014. What Are You Talking About? Text-to-
Image Coreference. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH,
USA, June 23-28, 2014. 3558-3565. https://doi.org/10.1109/CVPR.2014.455

Yehao Li, Ting Yao, Yingwei Pan, Hongyang Chao, and Tao Mei. 2018. Jointly Localizing and Describing Events for
Dense Video Captioning. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake
City, UT, USA, June 18-22, 2018. 7492-7500.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollar, and C. Lawrence
Zitnick. 2014. Microsoft COCO: Common Objects in Context. In Computer Vision - ECCV 2014 - 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V. 740-755. https://doi.org/10.1007/978-3-319-10602-1_48
Jiasen Lu, Anitha Kannan, Jianwei Yang, Devi Parikh, and Dhruv Batra. 2017. Best of Both Worlds: Transferring
Knowledge from Discriminative Learning to a Generative Visual Dialog Model. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach,
CA, USA. 313-323.

Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. 2016. Hierarchical Question-Image Co-Attention for Visual
Question Answering. In Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016, Barcelona, Spain. 289-297.

Mateusz Malinowski, Marcus Rohrbach, and Mario Fritz. 2017. Ask Your Neurons: A Deep Learning Approach to Visual
Question Answering. International Journal of Computer Vision 125, 1-3 (2017), 110-135. https://doi.org/10.1007/s11263-
017-1038-2

Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. 2014. Recurrent Models of Visual Attention. In
Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems
2014, December 8-13 2014, Montreal, Quebec, Canada. 2204-2212.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Mar-
tin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou,
Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015. Human-level control through
deep reinforcement learning. Nature 518, 7540 (2015), 529-533. https://doi.org/10.1038/nature14236

Pingbo Pan, Zhongwen Xu, Yi Yang, Fei Wu, and Yueting Zhuang. 2016. Hierarchical Recurrent Neural Encoder
for Video Representation with Application to Captioning. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. 1029-1038. https://doi.org/10.1109/CVPR.2016.117
Bryan A. Plummer, Liwei Wang, Chris M. Cervantes, Juan C. Caicedo, Julia Hockenmaier, and Svetlana Lazebnik. 2017.
Flickr30k Entities: Collecting Region-to-Phrase Correspondences for Richer Image-to-Sentence Models. International
Journal of Computer Vision 123, 1 (2017), 74-93. https://doi.org/10.1007/s11263-016-0965-7

Vignesh Ramanathan, Armand Joulin, Percy Liang, and Fei-Fei Li. 2014. Linking People in Videos with "Their"
Names Using Coreference Resolution. In Computer Vision - ECCV 2014 - 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part I. 95-110. https://doi.org/10.1007/978-3-319-10590-1_7

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. 2015. Sequence Level Training with
Recurrent Neural Networks. arXiv abs/1511.06732 (2015).

Mengye Ren, Ryan Kiros, and Richard S. Zemel. 2015. Exploring Models and Data for Image Question Answering. In
Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems
2015, December 7-12, 2015, Montreal, Quebec, Canada. 2953-2961.

Steven J. Rennie, Etienne Marcheret, Youssef Mroueh, Jarret Ross, and Vaibhava Goel. 2017. Self-Critical Sequence
Training for Image Captioning. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, July 21-26, 2017. 1179-1195. https://doi.org/10.1109/CVPR.2017.131

Anna Rohrbach, Marcus Rohrbach, Ronghang Hu, Trevor Darrell, and Bernt Schiele. 2016. Grounding of Textual
Phrases in Images by Reconstruction. In Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part I. 817-834. https://doi.org/10.1007/978-3-319-46448-0_49

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.


https://doi.org/10.1109/CVPR.2015.7298754
https://doi.org/10.1109/TCSVT.2020.2965966
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/978-3-319-46448-0_7
https://doi.org/10.1109/TPAMI.2016.2598339
https://doi.org/10.1109/CVPR.2014.455
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/s11263-017-1038-2
https://doi.org/10.1007/s11263-017-1038-2
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/CVPR.2016.117
https://doi.org/10.1007/s11263-016-0965-7
https://doi.org/10.1007/978-3-319-10590-1_7
https://doi.org/10.1109/CVPR.2017.131
https://doi.org/10.1007/978-3-319-46448-0_49

111:16 H. Fan et al.

[31] Anna Rohrbach, Marcus Rohrbach, Niket Tandon, and Bernt Schiele. 2015. A dataset for Movie Description. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. 3202-3212.
https://doi.org/10.1109/CVPR.2015.7298940

[32] Paul Hongsuck Seo, Andreas Lehrmann, Bohyung Han, and Leonid Sigal. 2017. Visual Reference Resolution using
Attention Memory for Visual Dialog. In Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA. 3722-3732.

[33] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition.
arXiv abs/1409.1556 (2014).

[34] Anqi Wang, Haifeng Hu, and Liang Yang. 2018. Image Captioning with Affective Guiding and Selective Attention.
TOMCCAP 14, 3 (2018), 73:1-73:15. https://doi.org/10.1145/3226037

[35] Christopher J. C. H. Watkins and Peter Dayan. 1992. Q-learning. Machine Learning 8 (1992), 279-292. https:
//doi.org/10.1007/BF00992698

[36] Ronald J. Williams. 1992. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning.
Machine Learning 8 (1992), 229-256. https://doi.org/10.1007/BF00992696

[37] Jie Wu, Haifeng Hu, and Yi Wu. 2018. Image Captioning via Semantic Guidance Attention and Consensus Selection
Strategy. ACM Transactions on Multimedia Computing, Communications, and Applications TOMCCAP 14, 4 (2018).
https://doi.org/10.1145/3271485

[38] Qi Wu, Chunhua Shen, Linggiao Liu, Anthony R. Dick, and Anton van den Hengel. 2016. What Value Do Explicit
High Level Concepts Have in Vision to Language Problems?. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. 203-212.

[39] Qi Wu, Chunhua Shen, Peng Wang, Anthony R. Dick, and Anton van den Hengel. 2018. Image Captioning and Visual
Question Answering Based on Attributes and External Knowledge. IEEE Trans. Pattern Anal. Mach. Intell. 40, 6 (2018),
1367-1381. https://doi.org/10.1109/TPAMI.2017.2708709

[40] Qi Wu, Peng Wang, Chunhua Shen, Ian D. Reid, and Anton van den Hengel. 2018. Are You Talking to Me? Reasoned
Visual Dialog Generation through Adversarial Learning. In 2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt lake city, Utah, USA, June 18-22, 2018.

[41] Yu Wu, Lu Jiang, and Yi Yang. 2020. Revisiting EmbodiedQA: A Simple Baseline and Beyond. IEEE Transactions on
Image Processing 29 (2020), 3984-3992. https://doi.org/10.1109/TIP.2020.2967584

[42] Jun Xu, Ting Yao, Yongdong Zhang, and Tao Mei. 2017. Learning Multimodal Attention LSTM Networks for Video
Captioning. In Proceedings of the 2017 ACM on Multimedia Conference, MM 2017, Mountain View, CA, USA, October
23-27, 2017. 537-545. https://doi.org/10.1145/3123266.3123448

[43] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan Salakhutdinov, Richard S. Zemel, and
Yoshua Bengio. 2015. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. In Proceedings
of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015. 2048-2057.

[44] Yan Yan, Feiping Nie, Wen Li, Chenqiang Gao, Yi Yang, and Dong Xu. 2016. Image Classification by Cross-Media
Active Learning With Privileged Information. IEEE Trans. Multimedia 18, 12 (2016), 2494-2502. https://doi.org/10.
1109/TMM.2016.2602938

[45] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alexander J. Smola. 2016. Stacked Attention Networks for
Image Question Answering. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas,
NV, USA, June 27-30, 2016. 21-29. https://doi.org/10.1109/CVPR.2016.10

[46] Dongfei Yu, Jianlong Fu, Tao Mei, and Yong Rui. 2017. Multi-level Attention Networks for Visual Question Answering.
In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, Fuly 21-26, 2017.
4187-4195. https://doi.org/10.1109/CVPR.2017.446

[47] Linchao Zhu, Zhongwen Xu, Yi Yang, and Alexander G. Hauptmann. 2017. Uncovering the Temporal Context for
Video Question Answering. Int. . Comput. Vis. 124, 3 (2017), 409-421. https://doi.org/10.1007/s11263-017-1033-7

[48] Yuke Zhu, Oliver Groth, Michael S. Bernstein, and Li Fei-Fei. 2016. Visual7W: Grounded Question Answering in
Images. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016. 4995-5004. https://doi.org/10.1109/CVPR.2016.540

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.


https://doi.org/10.1109/CVPR.2015.7298940
https://doi.org/10.1145/3226037
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992696
https://doi.org/10.1145/3271485
https://doi.org/10.1109/TPAMI.2017.2708709
https://doi.org/10.1109/TIP.2020.2967584
https://doi.org/10.1145/3123266.3123448
https://doi.org/10.1109/TMM.2016.2602938
https://doi.org/10.1109/TMM.2016.2602938
https://doi.org/10.1109/CVPR.2016.10
https://doi.org/10.1109/CVPR.2017.446
https://doi.org/10.1007/s11263-017-1033-7
https://doi.org/10.1109/CVPR.2016.540

