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Abstract

In this paper, we tackle the problem of discovering new
classes in unlabeled visual data given labeled data from
disjoint classes. Existing methods typically first pre-train
a model with labeled data, and then identify new classes in
unlabeled data via unsupervised clustering. However, the
labeled data that provide essential knowledge are often un-
derexplored in the second step. The challenge is that the
labeled and unlabeled examples are from non-overlapping
classes, which makes it difficult to build a learning rela-
tionship between them. In this work, we introduce Open-
Mix to mix the unlabeled examples from an open set and
the labeled examples from known classes, where their non-
overlapping labels and pseudo-labels are simultaneously
mixed into a joint label distribution. OpenMix dynamically
compounds examples in two ways. First, we produce mixed
training images by incorporating labeled examples with un-
labeled examples. With the benefit of unique prior knowl-
edge in novel class discovery, the generated pseudo-labels
will be more credible than the original unlabeled predic-
tions. As a result, OpenMix helps preventing the model
from overfitting on unlabeled samples that may be assigned
with wrong pseudo-labels. Second, the first way encour-
ages the unlabeled examples with high class-probabilities
to have considerable accuracy. We introduce these exam-
ples as reliable anchors and further integrate them with un-
labeled samples. This enables us to generate more combi-
nations in unlabeled examples and exploit finer object re-
lations among the new classes. Experiments on three clas-
sification datasets demonstrate the effectiveness of the pro-
posed OpenMix, which is superior to state-of-the-art meth-
ods in novel class discovery.

1. Introduction
Recent advances in deep learning have witnessed great

developments in visual recognition, especially image clas-
sification [4]. It is reported that modern image classification
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models [9, 18, 19] can identify thousands of classes with
high accuracy, but require a large number of labeled train-
ing samples. Although semi-supervised learning (SSL) [2]
and noisy label learning (NLL) [6] can mitigate the need
for annotations and maintain high performance, they still
require some clean (SSL) or noisy (NLL) annotations for
every class of interest. Furthermore, the generalization abil-
ity of learned classifiers is far from the human ability. In
fact, a human can easily identify samples of new classes that
may appear in real applications. However, a learned classi-
fier can only recognize samples of the known classes, but
is likely to fail handling the ones of unseen (new) classes.
That is, it is significantly difficult and still underexplored to
identify new classes that are undefined previously and do
not have any annotated samples.

In this work, we attempt to address the recent proposed
problem, called novel class discovery [8], where we are
given labeled data of known (old) classes and unlabeled
data of novel (new) classes. It is an open set problem where
classes of unlabeled data are undefined previously and an-
notated samples of these novel classes are not available. The
goal of novel class discovery is to identify new classes in
unlabeled data with the support of knowledge of old classes.
To achieve this objective, existing methods [7, 8, 10, 11]
commonly follow a two-step learning strategy: 1) pre-train
the model with labeled data to obtain basic discriminative
ability; 2) recognize new classes in unlabeled data via un-
supervised learning upon the trained model. However, the
labeled data are only used to learn off-the-shelf features in
the first step, but are largely ignored in the second step.
In this way, the model can only benefit from the off-the-
shelf knowledge of the labeled data, but fails to leverage the
underlying relationship between the labeled and unlabeled
data. In this work, we argue that the labeled data provide
essential knowledge about underlying object structures and
common visual patterns. However, the use of labeled data is
much harder than in semi-supervised learning [2, 16], due
to the fact that the labeled and unlabeled samples are from
disjoint classes.

To this end, the question is how to effectively exploit the
labeled data to promote the discovery of new classes? In
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Figure 1. Examples of (a) directly using MixUp among unlabeled samples and (b) the proposed OpenMix. Due to the uncertainty of
pseudo-labels of unlabeled samples, their mixed labels may still have low confidence. In OpenMix, the prior knowledge (area of high
confidence) leads the mixed label to have high (exactly true) confidence in old classes and medium (reliable) confidence in new classes.

this work, we try to answer this question and propose a sim-
ple but effective method, called OpenMix, for the open set
problem considered in this paper. OpenMix is largely mo-
tivated by MixUp [31], which is widely used in supervised
learning [29, 31] and semi-supervised learning [1, 2]. How-
ever, one premise of using MixUp is that there should be
labeled samples for every class of interest, which is not ap-
propriate for our task. This is because we only have pseudo-
labels for unlabeled samples of new classes, and the accu-
racy of these pseudo-labels can not be guaranteed. If we di-
rectly apply MixUp on unlabeled samples along with their
uncertain pseudo-labels, the generated pseudo-labels will
still be unreliable (Fig. 1 (a)). Training with these unreliable
pseudo-labels may further damage the model performance.
Therefore, it is non-trivial to adopt MixUp for novel class
discovery.

Instead of readily using MixUp on unlabeled samples,
during the unsupervised clustering, OpenMix generates
training samples by incorporating both labeled and unla-
beled samples. OpenMix compounds samples in two ways.
First, OpenMix mixes the labeled samples with unlabeled
samples. Meanwhile, since the labeled and unlabeled sam-
ples belong to different label spaces, we first extend their
labels/pseudo-labels to joint label distributions, and then
mix them. OpenMix leverages two priors in novel class dis-
covery: 1) labels of labeled samples of old classes are ex-
actly clean, and 2) labeled and unlabeled samples belong to
completely different classes. These two properties encour-
age the pseudo-labels of mixed samples to have 1) exactly
true confidence in old classes and 2) higher confidence in
new classes (Fig. 1 (b)). That is, in the old class set, the
pseudo-label of a mixed sample is correct, because the la-
bel of the labeled counterpart is correct and the unlabeled
counterpart does not belong to any old classes. On the other
hand, in the new class set, the uncertainty of a pseudo-label
will be partially eliminated by mixing with the labeled sam-
ple. This is because the labeled counterpart does not belong
to any new classes and its label distribution in the new class
set is exactly true. With the above properties, the pseudo-

labels of mixed samples will be more reliable than those of
their unlabeled counterparts. As a result, OpenMix can help
preventing the model from overfitting on unlabeled samples
that may be assigned wrong pseudo-labels. Second, we ob-
serve that the first way of OpenMix encourages the model
to keep high classification accuracy for unlabeled samples
having high class-probabilities. Therefore, we select these
samples as reliable anchors of new classes and mix them
with unlabeled samples for further improvement.

In summary, the contributions of this paper are: (1) This
work proposes the OpenMix, which is tailor-made for effec-
tively leveraging known knowledge in novel class discov-
ery. OpenMix can prevent the model from fitting on wrong
pseudo-labels, thereby consistently improving the model
performance. (2) OpenMix enables us to explore reliable
anchors from unlabeled samples, which can be used to gen-
erate diverse smooth samples of new classes towards a more
discriminative model. (3) This paper presents a simple
baseline for novel class discovery, which can achieve com-
petitive results. Experiments conducted on three datasets
show that our approach outperforms the state-of-the-art
methods by a large margin in novel class discovery.

2. Related Work

This work is related to novel class discovery, unsuper-
vised clustering, transfer learning, semi-supervised learning
and MixUp [31]. We briefly review the most representative
works and discuss the relationship with them.

Novel Class Discovery is a recent task aiming at recog-
nizing novel classes in unlabeled data. Different from the
traditional unsupervised learning, this task also provides la-
beled data of other classes. Existing methods usually use
the labeled data for model initialization and perform unsu-
pervised clustering on unlabeled data. In [10] and [11], a
Constrained Clustering Network (CCN) is proposed. CCN
first trains a binary-classification model on labeled data to
estimate pair-wise similarity of images. Then, a clustering
model is trained on unlabeled data by using the prediction



of the binary-classification model as supervision. The dif-
ference between [10] and [11] is the loss function used in
CCN. Compared to these two methods, our OpenMix intro-
duces several hyper-parameters. However, we use the same
parameters across all datasets, and consistently achieve well
performance that is largely better than [10, 11]. Han et
al. [8] first pre-train the model on labeled data by cross-
entropy loss and then implement clustering on unlabeled
data by DEC [27]. Latter, Han et al. [7] propose employ-
ing rank statistics to estimate the pairwise similarity of im-
ages. The pairwise pseudo-labels are used to achieve un-
supervised clustering on the unlabelled data. Except [7],
none of the above methods use the labeled data during the
stage of unsupervised clustering. In [7], the labeled data are
mainly used to keep the model accuracy on old classes. By
contrast, our goal is improving the accuracy on new classes
with the labeled data.

Unsupervised Clustering focuses on automatically di-
viding unlabeled data. Many classic methods [15, 30] and
deep learning methods [5, 27, 28] have been proposed. Un-
like novel class discovery, there is no prior knowledge pro-
vided (e.g., labeled data) for unsupervised clustering. In
such a context, there may be multiple criteria for most
datasets, such as color, shape, and other attributes, so that
the clustering results may not fit the expectation. In con-
trast, the labeled data in novel class discovery provide use-
ful knowledge and can guide us to learn clustering models
that match the clustering criteria of labeled data.

Transfer Learning [17, 21, 25] aims to transfer the
knowledge of a labeled dataset to another dataset. Gen-
erally, the classes of the new (target) dataset are different
from the previous (source) one. In transfer learning, both
the source and target data are labeled. Instead, the target
data are unlabeled in novel class discovery, leading this task
to be more difficult.

Semi-Supervised Learning [1, 2, 16, 22] is designed to
training a model on a partially labeled dataset. Novel class
discovery is similar to this task in that both tasks are pro-
vided with labeled and unlabeled samples. The difference
is that the labeled and unlabeled samples share the same
class set in semi-supervised learning. However, the classes
of labeled and unlabeled samples are completely different
in novel class discovery.

MixUp [31] has been utilized successfully in supervised
learning [14, 29, 31] and semi-supervised learning [1, 2].
Unlike existing MixUp-based methods, we apply MixUp to
effectively leverage labeled data of known classes for novel
class discovery. In addition, existing MixUp-based meth-
ods assume that there are some clean labels for every class
of interest, which is an important precondition. However, in
novel class discovery, the labels of new classes are not avail-
able, causing MixUp not to be directly applicable without
careful design.

3. Our Method

In novel class discovery, we are provided with labeled
data Dl = {X l, Y l} and unlabeled data Du = {Xu}. The
number of samples is N l in Dl and Nu in Du, respec-
tively. Each labeled image xli has a label yli, where yli ∈
{1, 2, ..., Cl} and Cl is the number of classes of Dl. Fol-
lowing [7], we assume the number of classes of Du is prior
knowledge, which is defined as Cu. The classes of Dl and
Du are disjoint. We define the classes as old classes and
new classes for Dl and Du, respectively. The goal of novel
class discovery is to leverage the knowledge of Dl to iden-
tify the classes in Du.

In this paper, we try to achieve this goal by learning
a model constructed by a convolutional neural network
(CNN) and two classifiers. These two classifiers, called old
classifier and new classifier, are used to recognize samples
from old classes and new classes, respectively. The frame-
work of our method is illustrated in Fig. 2. Next, we will
present the baseline model for novel class discovery.

3.1. Baseline

In this work, we follow the two-stage learning strategy to
design the baseline. In the first stage, we utilize the labeled
data to train the CNN and the old classifier, which can pro-
vide basic discriminative representations for images and ac-
curately classify samples of old classes. In the second stage,
we learn an unsupervised clustering model on the unlabeled
data by pseudo-pair learning and pseudo-label learning, en-
abling us to identify samples of new classes.
Stage 1: Model Initialization Given the labeled data Dl

= {X l, Y l}, we are able to train the model in a super-
vised way. Specifically, the model is trained with the cross-
entropy loss, as done in the traditional supervised classifi-
cation [9, 13]. The loss function is formulated as,

Lce = − 1
nl

nl∑
i=1

log[SoftMax(zli)]
> · ŷli, (1)

where nl is the number of labeled training samples in a
mini-batch, zli ∈ RCl

is the output of old classifier, and
ŷli ∈ RCl

is the one-hot label converted by yli.
Stage 2: Unsupervised Clustering
Pseudo-Pair Learning. Given the model pre-trained on the
labeled data, we additionally add a classifier layer of Cu

new classes on the head of CNN. We then focus on the sec-
ond stage, i.e., unsupervised clustering in unlabeled data.
To achieve this goal, we first explore the relationship be-
tween two images for model training. Inspired by DAC [3]
and DCCM [26], we argue that the relation of pairwise im-
ages is binary. In other words, each pair of images should be
either of the same class or different classes. In light of this,
we convert the unsupervised clustering problem to a binary
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Figure 2. The pipeline of the proposed method. (a) We first initialize the model on the labeled data (Lce). (b) Then, we learn the
unsupervised clustering model for discovering new classes in unlabeled data, by pseudo-pair learning (Lppl), pseudo-label learning (Lpll)
and learning with the proposed OpenMix (Lopm).

classification one, aiming to distinguish whether a pair of
images belong to the same class.

Similar to DAC [3] and DCCM [26], we first obtain the
outputs of the new classifier for input unlabeled samples and
compute their cosine similarity matrix S ∈ Rnu×nu

, where

Si,j =
(ẑu

i )>.ẑu
j

‖ẑu
i ‖2‖ẑu

j ‖2
, ẑui = SoftMax(zui ). (2)

zui ∈ RCu

is the output of the new classifier. nu denotes
the number of unlabeled training images in a mini-batch.
We then estimate the pseudo-pairwise labelsW by setting a
threshold θ1 on S, where

Wi,j =

{
0, Si,j < θ1

1, Si,j ≥ θ1
. (3)

By doing so, two images are defined as a positive pair if
their cosine similarity is larger than θ1, otherwise they are a
negative pair. Given this pairwise supervision, we train the
model with a binary cross-entropy loss, formulated as,

Lppl = − 1
(nu)2

∑
i,j

(
Wi,j logSi,j

+(1−Wi,j) log(1− Si,j)
)
, ∀i, j ∈ {1, 2, ..., nu}.

(4)

Pseudo-Label Learning. According to the proof given
by DAC [3] and DCCM [26], the constraint Wi,j between
images xui and xuj defined in Eq. 4 can bring the follow-
ing clustering property: If the optimal solution of Eq. 4 is
achieved, ∀i, j, ẑu ∈ RCu

, ẑui = ẑuj ⇔ Wi,j = 1, and,
ẑui 6= ẑuj ⇔Wi,j = 0.
This property denotes that the predictions of the optimal
new classifier, ẑu, are exactly Cu-diverse one-hot vectors.
In other words, the unlabeled data Du can be automatically
divided into Cu partitions.

Based on this property, for unlabeled samples, we refor-
mulate their predictions output by the new classifier to one-
hot pseudo-labels, which can be used to further improve the
model performance. The one-hot pseudo-label ŷui of an un-
labeled image xui is generated by setting a threshold θ2 on
ẑui , where

ŷui [j] =

{
0, ẑui [j] < θ2

1, ẑui [j] ≥ θ2
. (5)

In the pseudo-label learning, we only train the model
with the unlabeled samples that are assigned with one-
hot pseudo-labels, i.e., Max(ŷu) = 1. Given the one-hot
pseudo-labels for unlabeled samples, we are able to train
the model with cross-entropy loss, formulated as,

Lpll = − 1
n̂u

∑
i

log(ẑui )> · ŷui , ∀i ∈ {Max(ŷui ) = 1}, (6)

where n̂u is the number of unlabeled samples that are as-
signed with one-hot pseudo-labels in a mini-batch.
Combination of Two Losses. By jointly considering the
pseudo-pair learning and pseudo-label learning, the unsu-
pervised clustering loss is expressed as,

Luc = Lppl + λ1Lpll, (7)

where λ1 is the hyper-parameter that controls the impor-
tance of pseudo-label learning. To this end, we have pre-
sented our baseline for novel class discovery.

3.2. OpenMix

In the baseline presented in Section 3.1, the labeled data
only play the role of model initialization. However, there
is no utilization of labeled data in the second unsupervised
clustering stage. In this paper, we argue that the labeled data



can provide important knowledge for improving the unsu-
pervised clustering. In this section, we propose the Open-
Mix for effectively leveraging the labeled dataDl during the
unsupervised clustering in unlabeled data Du. OpenMix is
easy to implement. In a nutshell, during unsupervised clus-
tering, OpenMix additionally compounds examples in two
ways: 1) mix unlabeled examples with labeled samples; and
2) mix unlabeled examples with reliable anchors.
Mix with Labeled Examples. In the first way, OpenMix
mixes the labeled samples with unlabeled samples, as well
as their labels with pseudo-labels. Taking the prior knowl-
edge that labeled samples and unlabeled samples belong to
completely different classes, we first extend the label dis-
tributions of the labeled samples and unlabeled samples to
the same size. Specifically, we concatenate ŷl with a Cu-
dim zeros-vector while ẑu with a Cl-dim zeros-vector. The
extended labels/pseudo-labels are represented by ȳl for la-
beled samples and ȳu for unlabeled samples, respectively.
We then generate virtual sample with MixUp [31],

η ∼ Beta(ε, ε), η∗ = Max(η, 1− η),
m = η∗xl + (1− η∗)xu, v = η∗ȳl + (1− η∗)ȳu, (8)

where ε is a hyper-parameter and η ∈ [0, 1]. m is the gen-
erated sample and v is the pseudo-label of m. The second
constraint in Eq. 8 ensures that the generated sample m is
closer to xl than xu. This can alleviate the negative impact
caused by unreliable pseudo-labels of unlabeled samples.

As shown in Fig. 1 (b), the mixed sample has exactly
true confidence in the old classes and medium confidence
in the new classes. This is benefited from the prior knowl-
edge, i.e., the label of labeled sample is exactly true, and,
the classes of labeled and unlabeled samples are completely
different. Therefore, by mixing labeled samples with un-
labeled samples through OpenMix, the pseudo-labels of
mixed samples will be more reliable than that of their un-
labeled counterparts. Learning with the mixed samples can
help prevent the model from overfitting on unlabeled sam-
ples that are assigned with wrong pseudo-labels.
Mix with Reliable Anchors. By training with samples gen-
erated by the first way, we find that the model keeps con-
siderable accuracy for unlabeled samples that are predicted
with high class-probabilities (Max(ẑu) ≥ θ2). Based on
this observation, in second way, we further select the unla-
beled samples that have high class-probabilities as reliable
anchors. Then, we mix the anchors with unlabeled samples
through OpenMix. Specifically, we perform this operation
by replacing the labeled sample xl with a reliable anchor in
Eq. 8.
Loss of OpenMix. Given mixed samples M and their
pseudo-labels V , we apply L2-norm loss to train the model,
defined as,

Lopm = 1
|M|

∑
i∈M

1
Cl+Cu ‖vi − SoftMax(zmi )‖2, (9)

where |M| denotes the number of samples in M. zmi in-
dicates the concentrated outputs of the old and new classi-
fiers. Specifically, we forward mi to the model and extract
the outputs of the old and new classifiers, which are repre-
sented as zli and zui , respectively. zmi is then obtained by
concentrating zli and zui .

Remark. OpenMix has the following advantages: 1) By
mixing labeled and unlabeled samples, the mixed pseudo-
label at least contains a portion of correct labels on both
known and new classes, thereby effectively eliminating in-
correct pseudo-labels of unlabeled samples; 2) The joint-
distribution of known and new classes injects an extra weak
supervision during training, i.e., labeled/unlabeled data are
not of new/known classes, which can restrain the errors of
pseudo-labels on new classes. The above two aspects enable
our OpenMix to provide more stable and reliable training.

3.3. Overall Loss

By combining the baseline and the proposed OpenMix,
the overall loss of our method is expressed as,

Lall = Luc + λ2Lopm, (10)

where λ2 balances the weight of OpenMix.
We also consider the constraint of transformation con-

sistency [16, 22] in our method. This constraint assumes
that the predictions on an image x and its transformation
counterpart x′ should be the same. Instead of directly min-
imizing the difference between predictions of x and x′, we
follow [26] to additionally enforce the constraints of our
method for the transformed counterpart x′. Specifically, at
each training iteration, we use the same pseudo-pairwise
labels and one-hot pseudo-labels for the images and their
transformation counterparts. The final loss of our method
can be reformulated as,

Lall = Luc + λ2Lopm + L′uc + λ2L′opm, (11)

where L′uc and L′opm are the losses computed on trans-
formed unlabeled samples. During testing, we use the new
classifier to predict the classes of unlabeled samples.

4. Experiments
4.1. Datasets and Settings

Datasets. In this paper, we evaluate our method on three
image classification benchmarks, including CIFAR-10 [12],
CIFAR-100 [12] and ImageNet [4]. Following [7], we con-
duct the experiment on the setting where the number of
classes in unlabeled data is known. CIFAR-10 [12] in-
cludes 50,000 training images and 10,000 test images from
10 classes. Each image has a size of 32×32. For novel class
discovery, we regard the samples of the first five classes
(i.e., airplane, automobile, bird, cat and deer) as labeled data



while the remaining samples as unlabeled data. CIFAR-100
[12] is similar to CIFAR-10, except that samples of CIFAR-
100 are drawn from 100 classes. We regard the samples
of first 80 classes as labeled data, the samples of last 10
classes as unlabeled data, and the remaining samples as val-
idation data. ImageNet [4] contains 1.28 million training
images from 1,000 classes. Following [10, 11, 24], we di-
vide the ImageNet into two splits, which contain 882 and
118 classes, respectively. We use the 882-class split as the
labeled set. Three 30-class subsets randomly sampled from
the 118-class split are used as unlabeled sets.
Evaluation. We employ the clustering accuracy (ACC) and
normalized mutual information (NMI) [20] as the metrics
to evaluate the clustering performance of new classes. Both
metrics range from 0 to 1. Higher scores mean better per-
formance. For CIFAR-10 and CIFAR-100, we show the av-
erage results of 10 runs. For ImageNet, results averaged in
three different subsets are reported.

4.2. Implementation Details

For a fair comparison, we follow [8, 10, 11] and use the
6-layer VGG-like architecture [19] / ResNet-18 [9] network
for CIFAR-100 / {CIFAR-10, ImageNet}. For all three
datasets, we pre-train the CNN and old classifier on the la-
beled data with common practice of supervised image clas-
sification [9]. Given the pre-trained model, we add a new
classifier on the head of the CNN and train the clustering
model. Specifically, we use RMSprop as the optimizer to
train the model. The learning rate is kept to 0.0001 through-
out the training process. We train the model for a total of
200/400/100 epochs for CIFAR-10/CIFAR-100/ImageNet.
The batch sizes of unlabeled data and mixed data are both
set to 64. During training, we fix the CNN and only train
the new classifier at the first 60/50/100 epochs for CIFAR-
10/CIFAR-100/ImageNet. Then, we train the whole model
in the remaining epochs. For OpenMix, we inject the two
ways of OpenMix at the 2-th epoch and 5-th epoch, respec-
tively. For all experiments, we set θ1 = 0.95, θ2 = 0.9,
λ1 = 5, λ2 = 1000, and ε = 1, which can consistently
achieve well performance across datasets.

4.3. Evaluation

Ablation study on baseline. In Table 1, we first investi-
gate the two components in the baseline model, i.e., pseudo-
pair learning (PPL) and pseudo-label learning (PLL). For
comparison, we remove one of them from the baseline
model and train the model. As shown in Table 1, each com-
ponent contributes to improve the performance. Among
them, pseudo-pair learning is the most important to novel
class discovery. Without pseudo-pair learning, the cluster-
ing accuracy is significantly reduced from 90.9% to 70.8%
on CIFAR-10, and the model fails to converge on CIFAR-
100 (ACC=23.9%). When removing pseudo-label learn-

Table 1. Ablation study on CIFAR-10 and CIFAR-100. PPL:
pseudo-pair learning, PLL: pseudo-label learning, MixUp: origi-
nal MixUp [31], Extend: extend the label distribution, OpenMix:
the proposed OpenMix; L: labeled samples, U: unlabeled samples,
A: anchors selected from unlabeled samples.

Method
CIFAR-10 CIFAR-100

ACC NMI ACC NMI
Baseline 90.9% 0.787 81.2% 0.689
Baseline w/o PPL 70.8% 0.691 23.9% 0.094
Baseline w/o PLL 90.0% 0.767 77.2% 0.638
Basel. + MixUp (U) 80.2% 0.575 78.2% 0.683
Basel. + MixUp (A) 79.4% 0.553 77.6% 0.649
Basel. + Extend (L) 90.7% 0.785 81.8% 0.709
Basel. + Extend (U) 90.8% 0.789 81.5% 0.702
Basel. + Extend (L+U) 91.4% 0.781 81.9% 0.708
Basel. + OpenMix w/o A 93.3% 0.828 84.5% 0.733
Basel. + OpenMix w/o L 75.2% 0.486 81.6% 0.690
Basel. + OpenMix 95.3% 0.879 87.2% 0.754

ing from the baseline model, the performance will consis-
tently be reduced on both datasets, especially on CIFAR-
100. For example, on CIFAR-100, the results of the model
trained without pseudo-label learning (“baseline w/o PLL”)
are lower than the baseline by 4% in ACC and by 0.051 in
NMI. Considering these two components together achieves
the best results, demonstrating their mutual benefit.

Ablation study on OpenMix. To validate the effective-
ness of the proposed OpenMix, we compare OpenMix with
the following variants:
• MixUp (U) / MixUp (A): directly apply MixUp [31]

among unlabeled samples / anchors selected from unla-
beled samples.

• Extend (L) / Extend (U) / Extend (L+U): extend the label
distributions of labeled samples / unlabeled samples / la-
beled + unlabeled samples to the size of Cl +Cu, and use
them to train the model with cross-entropy loss.

• OpenMix w/o L: apply OpenMix without mixing labeled
samples with unlabeled samples.

• OpenMix w/o A: apply OpenMix without mixing anchors
with unlabeled samples.

From the comparisons in Table 1, we obtain the following
observations:

1. Without any modification, directly applying MixUp [31]
among unlabeled samples fails to achieve an improve-
ment. Both “Basel. + MixUp (U)” and “Basel. + MixUp
(A)” reduce the results of the baseline model. The main
reason is that labeled samples of new classes are not
available in novel classes discovery and pseudo-labels of
unlabeled samples are unreliable. Mixing samples that
are assigned with unreliable pseudo-labels may still gen-
erate unreliable ones. This may lead the model to overfit
on samples that are assigned with wrong pseudo-labels,
thus harming the model performance.
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chors and (b) the number of selected anchors throughout training.
Experiment is conducted on CIFAR-100.

2. Extending the label distributions to the distributions that
include both old and new classes may slightly improve
the performance. The improvement is benefited from the
extra weak supervision that their labels in the extended
classes are correct. For example, “Basel. + Extend
(L+U)” improves the clustering accuracy of the baseline
from 81.2% to 81.9% for CIFAR-100.

3. Applying OpenMix between labeled samples and un-
labeled samples (“Basel. + OpenMix w/o A”) consis-
tently improves the results of the baseline. For instance,
“Basel. + OpenMix w/o A” achieves 2.4% and 3.3% im-
provement in clustering accuracy compared to the base-
line for CIFAR-10 and CIFAR-100, respectively. More-
over, applying OpenMix between labeled samples and
unlabeled samples is an essential step of our method.
When applying OpenMix only between anchors and un-
labeled samples (“Basel. + OpenMix w/o L”), the im-
provement is very limited on CIFAR-100, or even nega-
tive on CIFAR-10.

4. Additionally performing OpenMix between anchors and
unlabeled samples based on “Basel. + OpenMix w/o
A” can further increase the performance. For example,
“Basel. + OpenMix” surpasses “OpenMix w/o A” by
2% and 2.7% in clustering accuracy for CIFAR-10 and
CIFAR-100, respectively. With the benefit of “Basel. +
OpenMix w/o A”, we are able to select reliable anchors
from unlabeled samples and utilize them to dominate the
mixing process for further improvement.
In conclusion, the first two observations indicate that

directly using MixUp [31] or extending label distribution
fails to effectively improve the performance for novel class
discovery. On the other hand, the latter two observations
demonstrate the effectiveness of the proposed OpenMix for
novel class discovery. In addition, it should be empha-
sized that the proposed OpenMix is not simply implement-
ing MixUp in novel class discovery. Instead, we explicitly
consider the prior knowledge and carefully design a method
for mixing examples from disjoint classes.

Investigation of selected anchors. In Fig. 3, we eval-
uate the classification accuracy of selected anchors and the
number of selected anchors throughout the training process.
It is clear that the model trained with using OpenMix among
labeled data and unlabeled data (“Baseline + OpenMix w/o
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Figure 4. Sensitivity to the weight of OpenMix.

A”) achieves much higher accuracy than the baseline model.
In addition, the accuracy of “Baseline + OpenMix w/o A”
can always be maintained above 95%. The full version of
OpenMix, which additionally mixes selected anchors with
unlabeled samples, will slightly reduce the accuracy after
20 epochs. The reduction in accuracy is mainly caused by
introducing more combinations of unlabeled samples. Be-
cause the CNN is fixed at the first 50 epochs, learning with
more combinations may lead the new classifier to overfit
on unreliable samples. However, the accuracy of OpenMix
will quickly increase after 50 epochs and will be higher than
that of “Baseline + OpenMix w/o A” after 80 epochs. From
Fig. 3 (b), we can observe that the numbers of selected
anchors of two OpenMix-based methods are consistently
lower than that of the baseline model. The above obser-
vations indicate that the proposed OpenMix can prevent the
model from overfitting on wrong pseudo-labels and ensures
the model to train with cleaner samples.

Impact of the weight of OpenMix. In Fig. 4, we eval-
uate the important hyper-parameter of our method, i.e., the
weight of OpenMix (λ2). For evaluation, we keep other
hyper-parameters unchanged and vary λ2 in a range of [0,
5000]. When λ2 = 0, our method reduces to the baseline
model. When inserting OpenMix into the system (λ2 ≥ 1),
the results are consistently improved in all values. Specifi-
cally, the performance first increases with λ2 and becomes
stable when λ2 ≥ 1000. The best results are produced when
λ2 in the range of [1000, 3000]. This indicates that our
method is insensitive to the changing of λ2 in a wide range.

4.4. Comparison with State-of-The-Art

In Table 2, we compare the proposed method with the
state-of-the-art methods, including: K-means [15], KCL
[10], MCL [11], DTC [8] and RS [7]. For K-means [15],
we train the model on the labeled data and extract the last
layer of the CNN as the features of unlabeled samples.
Then, we directly perform K-means on unlabeled data to
obtain clustering results. Our baseline achieves very com-
petitive clustering performance compared with the state of
the art. The baseline is higher than DTC [8] on CIFAR-
10 and CIFAR-100, and slightly lower than DTC [8] on
ImageNet. Moreover, it is clear that our method (“Base-
line+OpenMix”) outperforms state-of-the-art methods by a
large margin. Specifically, our approach achieves 95.3%
for CIFAR-10, 87.2% for CIFAR-100 and 85.7% for Im-



Table 2. Comparison with state-of-the-art methods on CIFAR-10, CIFAR-100 and ImageNet for novel class discovery. Note that, RS [7]
did not evaluate the NMI metric and did not provide results of 10-class setting on CIFAR-100.

Method Venue
CIFAR-10 CIFAR-100 ImageNet

ACC NMI ACC NMI ACC NMI
K-means [15] Classic 65.5% 0.422 66.2% 0.555 71.9% 0.713
KCL [10] ICLR18 66.5% 0.438 27.4% 0.151 73.8% 0.750
MCL [11] ICLR19 64.2% 0.398 32.7% 0.202 74.4% 0.762
DTC [8] ICCV19 87.5% 0.735 72.8% 0.634 78.3% 0.791
RS [7] ICLR20 91.7% - - - 82.5% -
Baseline CVPR21 90.9% 0.787 81.2% 0.689 77.1% 0.784
Ours CVPR21 95.3% 0.879 87.2% 0.754 85.7% 0.827
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Figure 5. T-SNE [23] visualization of unlabeled samples on CIFAR-10 and CIFAR-100. Results in different stages of our method are
shown. Different colors represent different classes. Our method progressively separates the unlabeled samples into discriminative clusters.

ageNet in clustering accuracy. Both KCL [10] and MCL
[11] use pairwise similarity for clustering learning. How-
ever, these two method fail to produce competitive perfor-
mance. For example, KCL and MCL have similar results
to K-means on CIFAR-10 and ImageNet, but are largely in-
ferior to K-means on CIFAR-100. Our method is signifi-
cantly superior to KCL and MCL. Compared to DTC [8],
our method surpasses it in all three datasets, especially in
CIFAR-100. RS [7] is the latest method, which also uses
the labeled data during unsupervised clustering. However,
RS mainly focuses on using labeled data to maintain the
accuracy in old classes. Compared to RS, our method out-
performs it by 3.6% and 3.2% in clustering accuracy for
CIFAR-10 and ImageNet, respectively, indicating that our
method establishes the new state of the art result.

4.5. Visualization

To better reflect the effectiveness of the proposed ap-
proach, we visualize the distributions of unlabeled samples
in different training epochs. Specifically, we extract the out-
puts of the new classifier as features of samples and map
them into 2-D vectors by t-SNE [23]. Visualization results
are shown in Fig. 5. We can find that 1) in the initialization,
unlabeled samples are scattered; 2) through the training of
our method, the samples of the same class are progressively

grouped together, thereby enabling the new classifier to ac-
curately recognize new classes in unlabeled data.

5. Conclusions

This work studies the problem of discovering novel
classes in unlabeled data given labeled data of disjoint
classes. To address this problem, we focus on effectively
incorporating the labeled data into the step of unsuper-
vised clustering in unlabeled data. To achieve this goal,
we present OpenMix to dynamically incorporate labeled
samples of known classes and unlabeled samples of novel
classes as well as their labels and pseudo-labels. OpenMix
can generate joint-class samples with reliable pseudo-labels
and diverse smooth samples of new classes. Learning with
these generated samples helps to improve the model per-
formance of new class recognition. Experiments conducted
on three image classification benchmarks demonstrate that
OpenMix can consistently improve the performance of a
competitive baseline, achieving state-of-the-art results.
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