
Inflated Episodic Memory with Region Self-Attention for
Long-Tailed Visual Recognition

Linchao Zhu1,2 and Yi Yang2∗

1 Baidu Research 2 ReLER, University of Technology Sydney
{linchao.zhu,yi.yang}@uts.edu.au

Abstract

There have been increasing interests in modeling long-
tailed data. Unlike artificially collected datasets, long-
tailed data are naturally existed in the real-world and thus
more realistic. To deal with the class imbalance problem,
we introduce an Inflated Episodic Memory (IEM) for long-
tailed visual recognition. First, our IEM augments the con-
volutional neural networks with categorical representative
features for rapid learning on tail classes. In traditional
few-shot learning, a single prototype is usually leveraged to
represent a category. However, long-tailed data has higher
intra-class variances. It could be challenging to learn a
single prototype for one category. Thus, we introduce IEM
to store the most discriminative feature for each category
individually. Besides, the memory banks are updated in-
dependently, which further decreases the chance of learn-
ing skewed classifiers. Second, we introduce a novel re-
gion self-attention mechanism for multi-scale spatial fea-
ture map encoding. It is beneficial to incorporate more
discriminative features to improve generalization on tail
classes. We propose to encode local feature maps at multi-
ple scales, and the spatial contextual information should be
aggregated at the same time. Equipped with IEM and region
self-attention, we achieve state-of-the-art performance on
four standard long-tailed image recognition benchmarks.
Besides, we validate the effectiveness of IEM on a long-
tailed video recognition benchmark, i.e., YouTube-8M.

1. Introduction
Recently, visual recognition models [20, 14] have

achieved significant success with the renaissance of deep
convolutional neural networks (ConvNets). These models
are usually trained on large datasets, e.g., ImageNet [31]
and Kinetics [18], demonstrating satisfying generalization
capabilities in various tasks, e.g., object detection [30], ob-
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Figure 1: Illustration of inflated episodic memory. The
visual cues are stored separately based on their categorical
information.

ject segmentation [24], video localization [12], video ques-
tion answering [45]. These datasets are artificially collected
to be balanced, where the number of training examples in
each category is roughly the same. However, data in real-
world applications usually follow a “long-tailed” distribu-
tion [4, 8]. In this distribution, a large number of examples
are data-scarce with only a few training examples. Specif-
ically, a few “head” classes contain thousands of examples
per category, while few instances exist for “tail” classes.
Human exhibits remarkable generalization capabilities in
recognizing rare examples. They can identify examples by
only observing objects a few times or even never seeing
them before. This generalization capability is essential in
deploying deep networks to real-world applications. Cur-



rent deep recognition models largely ignore the long-tailed
visual phenomena, making it challenging to extract robust
information from real data. Consequently, the performance
of “tail” classes can be significantly degenerated due to data
deficiency.

There have been a few attempts in modeling long-tailed
data to enhance generalization on tail classes. One promis-
ing direction is to transfer knowledge from head classes
to tail classes [9, 41, 43]. Wang et al. [41] adaptively
trained a meta-network on head classes and then applied it
to tail classes. Liu et al. [23] introduced a dynamic meta-
embedding to improve the robustness of tail recognition.
They also introduced to evaluate performance on the open-
set data. In their Open Long-Tailed Recognition (OLTR)
setting, the goal is to learn from both long-tailed and open-
ended data. However, the meta-embedding is not dynam-
ically updated during training, and each category corre-
sponds to a single embedding vector. The single embed-
ding vector might fail to represent the data distribution. In
this paper, we introduce a new framework with an inflated
episodic memory to tackle the OLTR problem.

First, we propose an Inflated Episodic Memory (IEM)
to augment ConvNets with multiple memory banks (Fig-
ure 1). Each memory is independent. We utilize a differen-
tiable memory block for each category. Each memory bank
records the most discriminative features for the correspond-
ing category. It can be a natural design choice for extremely
imbalanced datasets as each memory bank is updated inde-
pendently. We are motivated by episodic training for few-
shot classification in [39, 32], where a prototype is calcu-
lated for each class in an episode. In the few-shot regime,
the number of categories for each episode is small. Thus, a
single prototype is sufficient to represent a category. Liu et
al. [23] extended the idea by leveraging a global memory
structure that stores prototypes (“centroids”) for all cate-
gories. Different from few-shot learning, OLTR involves
with more training examples and more classes. Due to
higher intra-class variances, it is more challenging to learn
a single prototype for all examples in a category. Our in-
troduced IEM enables more robust representation learning
of the prototypes and provides a powerful mechanism for
imbalanced data modeling.

Second, we propose to extract discriminative region
features with our novel region self-attention mechanism
(RSA). Our region self-attention considers features at dif-
ferent scales. It is beneficial to exploit local region fea-
tures and utilize the most discriminative feature to improve
recognition of tail categories. Contextual information is
exploited during spatial feature encoding. RSA leverages
contextual relationships using the self-attention mechanism
during feature encoding. With region self-attention, IEM
records stronger discriminative features for all categories.
The performance is boosted when more visual cues are ex-

plored.
Third, we keep both the global feature and the RSA-

encoded feature in two separate banks. In this way, the
local features and the global features are updated indepen-
dently, offering a more feasible way for network weight
training and memory writing. We evaluate IEM on both
long-tailed video classification and long-tailed image clas-
sification tasks. We achieve the state-of-the-art performance
on five datasets.

2. Related Work
Imbalanced visual recognition. Data resampling is a
straightforward approach to model imbalanced data, where
[10] introduced a class rectification loss to discover sparsely
sampled boundaries of tail classes. Another direction is to
transfer knowledge from head classes to tail classes [41,
9, 23]. [23] used instance-balanced sampling to learn rep-
resentations and used a class-balanced sampling for long-
tailed classification. Cao et al. [6] introduced a margin loss
that expands the decision boundaries of tail classes. [41]
proposed to transfer meta-knowledge in a progressive man-
ner, from head classes to tail classes. Recent 2D [33, 44]
and 3D ConvNets for video classification [37, 7, 38] eval-
uate on balanced datasets, e.g., Kinetics [7]. The stud-
ies of imbalanced video classification are largely ignored.
YouTube-8M [3] is a large-scale long-tailed dataset. How-
ever, NetVLAD [25] is still the prevailing method, which
does not consider long-tailed nature in YouTube-8M. We
investigate IEM for long-tailed video classification.

Few-shot classification. In few-shot classification, the
goal is to generalize to novel categories given few exam-
ples [11, 39, 32, 36, 13, 29, 46]. The tail classes in long-
tailed classification contain only a few examples, and they
perform worse than head classes. It is promising to improve
long-tailed recognition by enhancing generalization on tail
classes. [11] introduced to use a cosine classifier between
the feature representations and the classification weight vec-
tors. [34] proposed to generate a prototype for each class
during few-shot classification. Liu et al. [23] extended the
idea of prototypical learning to long-tailed visual classifica-
tion. Our IEM leverages a memory for each class, enabling
the learning of more robust representations for each cate-
gory.

Memory-augmented networks. Memory-augmented
neural networks have made remarkable achievements in
recent years [35, 17, 28]. Kaiser et al. [17] proposed
a key-value memory module to update the memory via
element inserting. All examples are written to a global
memory, and the memory is updated via a ranking loss.
In contrast, we propose inflated episodic memory to store



categorical visual cues independently.

3. Our Method

We design a new framework focusing on learning multi-
scale local features and global features for visual cues mem-
orization. We aim to improve the robustness of recognition
on tail classes and generalization in open classes. Due to
data imbalance, the typical classifier is highly skewed to-
wards the head classes. We tackle this problem by introduc-
ing a novel module named inflated episodic memory. We
first introduce IEM with lookup and update operations in
Section 3.1. IEM can effectively store features in the long-
term. In Section 3.2, we introduce our region self-attention
mechanism to learn multi-scale local representations. We
present the whole framework in Section 3.3.

3.1. Inflated Episodic Memory

For each category in a dataset, there is a corresponding
inflated episodic memory. IEM rapidly integrates the visual
representations and the corresponding confidences, which
can be retrieved quickly for future predictions.

IEM follows the key-value form. [28] introduced a simi-
lar approach, but they applied it in the reinforcement learn-
ing scenario. We denote the l-th IEM as Ml = (Kl, Vl),
where Kl is the key memory and Vl is the value mem-
ory. The key memory saves the encoded features, while
the value memory stores the probability of the features be-
longing to category l. Each slot in memory Kl corresponds
to a memory slot in Vl. Kl contains arrays of vectors with
variable sizes. The memory is extended when new items
needed to be written. For each Ml, there is a memory size
limitation. It is used to avoid the out of memory problem.

In [17], the memory is reconstructed for each episode.
However, our IEM is not cleared, and it persists during the
whole learning process. The information in IEM can be
leveraged at inference.

Reading. Similar to most memory networks [35], the
lookup operation in IEM is based on the soft attention
mechanism. For each lookup, the output is a weighted sum
of the values in the value memory. The weights are gen-
erated by the similarity measurement between the lookup
query and the related keys in the key memory. Given a
query q, the output p is generated by,

p =

∑
i s(q,ki)vi∑
i s(q,ki)

(1)

where vi is the i-th prediction score in the value memory
Vl, and ki is i-th key vector in the key memory Kl. The
similarity function s(a,b) measures the distances between
two vectors. Following [28], we leverage inversed squared
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Figure 2: The feature map is partitioned into regions. The
feature map is 3 × 3, and the maximum allowed region is
2× 2. Four regions are generated after partition.

Euclidean distance,

s(a,b) =
1

||a− b||22 + δ
, (2)

where δ is added to avoid division by zero. This similarity
function is found to be robust to tail examples that are not
similar to the given query. We leverage kd-tree [5] to build
indices on a large number of entries for fast retrieval. It en-
ables efficient access when the memory size grows. Further-
more, we select top-n related slots for each memory reading
to avoid slow updates occurred in all memory slots. This
process further speeds up the access process.

Writing. We introduce the writing operation. In [35, 39],
there are no explicit writing operations. We introduce the
writing operation to enable dynamic memory representation
updates. The memory acts like a linked list. When a new
pair needed to be written, we simply append the new pair to
the original memory. Specifically, keys and values are writ-
ten to IEM by appending them onto the end of the memory
Kl and Vl, respectively,

Kl = Concat(Kl,ki), Vl = Concat(Vl, vi). (3)

“Concat” is the concatenation operation. If the key has al-
ready existed in the memory, the new key is not appended.
Meanwhile, its corresponding value is updated. We guaran-
tee that there are no duplicated key vectors in the memory
bank. The size of the memory is dynamically altered. To
avoid out of GPU memory, we set the memory with a max-
imum capacity. When the memory’s maximum capacity is
reached, the oldest key-value pair is deleted. The oldest
key-value pair is the least frequently accessed slot. We use
an age vector to record the access frequency for each mem-
ory slot, following [17]. The value is updated by,

vt+1 = γ ∗ vn + (1− γ)vt, (4)
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where vt is the original value in the memory, vn is the
new value to be written, vt+1 is the updated value, and γ
is weighting parameter.

Training Loss. When a reading operation is made, we ob-
tain a retrieved prediction. The loss is calculated to evalu-
ate the distance between the retrieved predictions and the
ground-truth label. We use a mean squared loss (MSE),

MSE(p, y) = ||p− y||22, (5)

where p is the prediction and y is the ground-truth. Both the
key memory and the value memory are updated via back-
propagation.

3.2. Region Self-Attention

In this section, we introduce a multi-level region encod-
ing mechanism to extract representative features for sub-
sequent recognition. The global feature aggregated by av-
erage pooling is a single compact vector, while the local
region information is ignored at the pooling stage. It is ben-
eficial to exploit local features for each image and utilize
the most discriminative feature for improving the recogni-
tion performance of tail categories. Liu et al. [23] proposed
modulated attention to locate discriminative cues from spa-
tial features. The motivation is that discriminative region
information is distributed in various locations. However,
they still leveraged a single global vector after the atten-
tion process. We instead propose a new region self-attention
(RSA) mechanism to extract local features from the feature
map. Contextual relationships are considered during fea-
ture encoding. When the attention weight is learned, we
keep region features at multiple scales in the IEM. Our IEM
provides stronger discriminative features for all categories,
improving the recognition ability at the feature-level.

RSA is inspired by [21], and it is a variant of self-
attention. RSA produces local features and encodes region
information effectively. During training, we insert RSA at
the last convolutional block before the final classification.
Our region encoding function produces region statistics like
mean, variances, region shape. The region statistics are ag-
gregated to generate a feature for regions at each scale.

Region Partition. We first divide the original feature map
into multi-scale parts. We introduce multiple kernels to scan
over the whole feature map to incorporate multi-scale fea-
tures. We denote a feature map as f . H and W are the
height and width of the feature map, respectively. Each
position has feature of fi,j , where i = {1, . . . ,H} and
j = {1, . . . ,W}. The maximum allowed region on the
feature map is of shape hmax × wmax. The RSA kernels
are (kh, kw), where kh = {1, 2, . . . , hmax} and kw =
{1, 2, . . . , wmax}. In Figure 2, we illustrate multi-scale ker-
nels on a 3 × 3 feature map, and the maximum allowed re-
gion is 2× 2. We introduce four kernels, i.e., 1× 1, 1× 2,
2 × 1, 2 × 2. Each kernel divides the region at different
scales and covers diverse multi-scale information.

Region Feature Encoding. We illustrate the encoding
process for each partitioned region (Figure 3). We denote
a region as r with height rh and width rw. The region fea-
ture is denoted as r. We obtain the (key, value)=(k, v) pair
by transforming r with a linear layer. ki,j is used to pro-
duce a region feature by a region encoding function. The
region encoding function considers the size of the region
and incorporates feature variances. The most straightfor-
ward method to aggregate region features is to simply av-
erage or sum them all. We denote the summation operator
sum as

∑i=rh;j=rw
i=1;j=1 ki,j .

We introduce a richer and stronger representation to en-
code each region key,

µ =
1

rh × rw

i=rh;j=rw∑
i=1;j=1

ki,j , (6)

σ =

√√√√ 1

rh × rw

i=rh;j=rw∑
i=1;j=1

(ki,j − µ)2, (7)

p = Concat[One-hot(rh)Wh,One-hot(rw)Ww], (8)
g = ReLU(Concat[µ, σ, p]Wo)Wd, (9)

where µ is the mean feature of region r, σ is the standard
deviation of vectors within this region, and W∗ are learn-
able weights. µ and σ are two important statistics about
this region. We leverage σ to show the variances in the re-
gion. We incorporate the region shape as a region feature
by encoding rh and rw with one-hot encoding. The one-hot
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vectors are embedded by an embedding matrix. We con-
catenate the height vector and the width vector to be the
region shape representation p. When we obtain µ, σ and p
to reflect region features, we generate the final region repre-
sentation by concatenating them, followed by a linear layer.
It is further activated by a ReLU activation and transformed
by a linear layer. The final region representation g extracts
helpful features from local regions. We denote the process
as Region-Key-Encoding.

The region self-attention process is illustrated as follows.
We obtain the query by mean pooling the whole feature map
f . The key map for each region r is obtained by encoding
the whole region with the aforementioned region key en-
coding mechanism,

Q =
1

H ×W

i=H;j=W∑
i=1;j=1

fi,j , (10)

K = Region-Key-Encoding(r), (11)

V =

i=rh;j=rw∑
i=1;j=1

vi,j (12)

We then follow the standard self-attention mechanism (SA)
to obtain the global representation for the whole feature
map,

SA(Q,K,V) = Softmax(
QKT

√
d

)V, (13)

where d is the input channel size.

3.3. IEM for Long-tailed Classification

In this section, we explain the use of the aforementioned
modules for long-tailed visual recognition. For a dataset
with n classes, we leverage 2 × n IEM banks. There are
two IEM blocks for each category, i.e., a global IEM and
a local IEM. The global block stores the global representa-
tion calculated by global average pooling. Meanwhile, the
local IEM saves the region features from the feature vectors
encoded by region self-attention mechanism (Section 3.2).

Memory Warmup. We first illustrate the memory
warmup stage. Initially, the memory is randomly initial-
ized. At this stage, both global and local visual features are
incorporated into the global memory bank and local mem-
ory bank, respectively (Figure 4). Specifically, given an im-
age x with label y, the classifier generates a logits y′ with
n dimensions. We leverage a convolutional network to ob-
tain feature f . The region encodings are r1, . . . , rc, where
c is the number of generated regions. The key-value pair
of ( 1

H×W
∑i=H;j=W

i=1;j=1 fi,j , y′[y]) is appended to the global
memory block. For local region features, there are pairs
of {(r1,y

′[y]), (r2,y
′[y]), . . . , (rc,y′[y])}, which are ap-

pended to local memory block sequentially.

Memory Update. The loss for memory update consists
of two parts. The first loss is the cross-entropy loss (CE),
which is used to update the weights of the convolutional net-
work. The second loss is the MSE loss. It is used to calcu-
late the gradient to update all memory blocks. For an input
x with label y, we not only calculate the loss for memory
bank y but select a hard negative memory block ȳ which is
ranked highest in logit y′ except the ground-truth label. We
constrain the retrieved prediction to have low scores. The
loss is defined as,

ppos = READ(My), (14)
pneg = READ(Mȳ), (15)
L = CE(y,y′) + MSE(ppos, 1) + MSE(pneg, 0). (16)

READ is the memory reading operation described in Sec-
tion 3.1. The network is optimized end-to-end via back-
propagation.

Inference. Given a test image at the inference stage, we
iterate over all memory blocks and retrieve the prediction
scores from all blocks. The n prediction scores are averaged
with the standard classifier prediction.
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D a t a d i s t r ib u ti o n  i n  Yo u Tu b e - 8 M

Figure 5: Data distribution on YouTube-8M. YouTube-8M
is a realistic dataset with a long-tailed distribution

4. Experiments

We evaluate our model on both long-tailed image classi-
fication and long-tailed video classification. We show that
our model can be generalized in both images and videos.

4.1. Datasets

We conduct quantitative experiments on long-tailed im-
age and video recognition datasets.
Long-tailed image classification. We evaluate on stan-
dard datasets, i.e., ImageNet-LT [23], Places-LT [23], SUN-
LT [23] for long-tailed image classification. Places-LT
and ImageNet-LT are designed for long-tailed recognition
evaluation, and they are sampled from the original bal-
anced datasets. The dataset details can be found in [23].
We follow [23] to construct the ImageNet-LT dataset. In
ImageNet-LT, there are 1K categories and 115.8K images,
with maximally 1,280 images per class and minimally 5 im-
ages per class. The test set is balanced. The open set is con-
structed by the additional classes of images in ImageNet-
2010. We conduct experiments on iNaturalist 2018 [16],
which is a fine-grained object recognition dataset with high-
class imbalance. Long-tailed video classification. We
use YouTube-8M [3] for long-tailed video classification.
YouTube-8M is a realistic dataset with the long-tailed distri-
bution. It contains diverse videos with 3,696 classes. Each
video may have multiple classes. The average video length
is 200 second, and the maximum video length is 300 sec-
ond. [3] provided the frame-level audio and visual features
for each frame sampled at 1 FPS. This dataset is extremely
imbalanced (Figure 5). The maximum number of exam-
ples per category is 788,288, while the minimum number of
examples per category is 123. The ratio between the head
class and the tail class is more than 5,000. In Figure 5,
we removed classes that have more than 10,000 training ex-
amples to visualize the distribution clearer. We report the

Method Accuracy
Plain Model [14] 48.0
Cost-Sensitive [15] 52.4
Model Reg. [40] 54.7
MetaModelNet [41] 57.3
OLTR [23] 58.7
Ours 60.2

Table 1: Comparisons on SUN-LT. Our IEM achieves the
best. We outperform OLTR [23] by 1.5%.

Method ResNet-50
CB-Focal [6] 61.1
LDAM [6] 64.6
LDAM+DRW [6] 68.0
Ours 70.2

Table 2: Comparisons on iNaturalist. We achieve substan-
tial improvements.

Method GAP mAP
NetVLAD baseline [25] 86.1 52.7
Ours 87.7 56.5

Table 3: Evaluation results on YouTube-8M dataset. Our
IEM outperforms the baseline on both GAP and mAP sig-
nificantly. We obtain a 3.8% improvement on mAP.

accuracy on the original validation set. We cross-validate
the hyper-parameters on the held-out validation set, where
we randomly sampled 5% videos from the training data.
We used Global Average Precision (GAP) as the evaluation
metric [3],

GAP =

P∑
i=1

p(i)∇r(i), (17)

where P is the number of top predictions, p(i) is the pre-
cision at prediction i, ∇r(i) is the change in the recall at
prediction i. P is set to 20. We also use Mean Average
Precision (mAP) as the metric. We conduct experiments on
YouTube-8M to demonstrate the effectiveness of our frame-
work for video classification.

4.2. Implementation Details

We set the number of nearest neighbors in IEM to 50 for
all experiments. For each IEM, we set the maximum mem-
ory size to 50,000. The update momentum γ is set to 0.99.
We use a small learning rate of 1×10−5 to update the mem-
ory. The memory is updated with Adam optimizer [19]. To
train the backbone network, we use stochastic gradient de-
scent (SGD) with momentum of 0.9, and the batch size is
256. The shorter side of each image is first resized to 256,



Closed-set setting Open-set setting
> 100 6 100 & > 20 < 20 > 100 6 100 & > 20 < 20

Methods Many Medium Few Overall Many Medium Few F-measure
Plain Model [14] 40.9 10.7 0.4 20.9 40.1 10.4 0.4 0.295
Lifted Loss [26] 35.8 30.4 17.9 30.8 34.8 29.3 17.4 0.374
Focal Loss [22] 36.4 29.9 16 30.5 35.7 29.3 15.6 0.371
Range Loss [42] 35.8 30.3 17.6 30.7 34.7 29.4 17.2 0.373
FSLwF [11] 40.9 22.1 15 28.4 40.8 21.7 14.5 0.347
OLTR [23] 43.2 35.1 18.5 35.6 41.9 33.9 17.4 0.474
Ours 48.9 44.0 24.4 43.2 46.1 42.3 20.1 0.525

(a) Classification results on ImageNet-LT.

Closed-set setting Open-set setting
> 100 6 100 & > 20 < 20 > 100 6 100 & > 20 < 20

Methods Many Medium Few Overall Many Medium Few F-measure
Plain Model [14] 45.9 22.4 0.36 27.2 45.9 22.4 0.36 0.366
Lifted Loss [26] 41.1 35.4 24 35.2 41 35.2 23.8 0.459
Focal Loss [22] 41.1 34.8 22.4 34.6 41 34.8 22.3 0.453
Range Loss [42] 41.1 35.4 23.2 35.1 41 35.3 23.1 0.457
FSLwF [11] 43.9 29.9 29.5 34.9 38.1 19.5 14.8 0.375
OLTR 44.7 37 25.3 35.9 44.6 36.8 25.2 0.464
Ours 46.8 39.2 28.0 39.7 48.8 42.4 28.9 0.486

(b) Classification results on Places-LT.

Table 4: Evaluation results on ImageNet-LT and Places-LT. We achieve better classification performance on both datasets,
and on both the close-set and the open-set settings.

and then we randomly sample a 224× 224 crop from the re-
sized image. The images are randomly flipped. We train the
network for 90 epochs with an initial learning rate of 0.1.
We anneal the learning rate at epoch 30 and 60 [23]. For
ImageNet-LT, following [23], we evaluate with the ResNet-
10 model that is randomly initialized. We follow the origi-
nal learning rate scheduling in [23], where the initial learn-
ing rate is set to 0.1 and decayed by 0.1 every 10 epoch. We
train the model with 30 epochs. For Places-LT and SUN-LT,
we leverage ResNet-152, and the initial learning rate is 0.01.
For iNaturalist, we train ResNet-50 with an initial learning
rate of 0.1. The total training epoch is 90, and the learning
rate is annealed at epoch 30 and 60. For YouTube-8M, we
train a NetVLAD model with the same set of hyperparam-
eters in [25]. We train it with 256 clusters and the size of
the hidden layers is 2,048. During training, we use a batch
size of 80. The initial learning rate of 0.0002 is used. The
learning rate is exponentially decayed at the rate of 0.8. We
implement our model with PaddlePaddle [1], TensorFlow
[2] and PyTorch [27].

4.3. Experimental Results

4.3.1 Long-tailed Image Classification

The results on ImageNet-LT and Places-LT are shown in
Table 4. The results on SUN-LT and iNaturalist are shown

in Table 1 and Table 2, respectively.

The effectiveness of IEM is validated across various
datasets. We obtain substantial improvements. For instance,
we outperform OLTR by 7.6% in the closed-set setting on
ImageNet-LT. We obtain a 3.8% improvement on overall
classification on Places-LT closed-set setting. Significant
improvements are also observed in the open-set settings.
For instance, we outperform OLTR [23] by 0.051 on F-
measure on the open-set of ImageNet-LT.

For the cases of tail classes (“few”), we observe a signifi-
cant improvement compared to OLTR. For example, on the
closed-setting of Places-LT, we obtain 3.3% performance
gain. For the case of ImageNet-LT, the improvement is
5.9%. The results show IEM with region self-attention is
extremely helpful for tail class recognition. It shows that
our IEM can learn from tail classes more effectively. Sim-
ilar improvements can be obtained in SUN-LT (Table 1).
In addition to ImageNet-LT, Places-LT, and SUN-LT, we
conduct experiments on iNaturalist, which is a more natural
long-tailed dataset. Notably, we achieve a 2.2% improve-
ment compared to [6]. All these results clearly show that
our IEM with region self-attention can alleviate the effect
of imbalanced data distribution. The learned model also
generalizes better in the open-set setting.
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Figure 6: Comparisons on YouTube-8M tail classes. We can observe a consistent accuracy improvement on the tail classes.
Note that there are tail classes that have low accuracy, showing the difficulties in modeling long-tailed data.

Method ImageNet-LT Places-LT SUN-LT iNaturalist
w/o RSA 41.7 31.1 59.3 69.5
w/o local memory 38.1 34.6 57.9 67.0
w/o global memory 40.8 36.9 58.9 68.1
Ours 43.2 39.7 60.2 70.2

Table 5: Ablation studies across the datasets. We study the effectiveness of the region self-attention mechanism (RSA), the
effectiveness of local IEM, and the effectiveness of global IEM. The results demonstrate the effectiveness of RSA components
and the design of IEM.

4.3.2 Long-tailed Video Classification

We also conduct experiments on YouTube-8M, which is a
video classification dataset. We apply IEM to the NetVLAD
network. Note that the provided features for YouTube-8M
are compact vectors. We are unable to obtain the original
spatial feature map for each video. We do not leverage lo-
cal memory for YouTube-8M. The results are shown in Ta-
ble 3. Notably, compared to the NetVLAD baseline, we
achieve a 4.8% improvement on the YouTube-8M dataset.
It demonstrates the effectiveness of our IEM in modeling
long-tailed distributions. Furthermore, the GAP metric is
also improved, which demonstrates that IEM can improve
overall generalization on both head and tail classes. The
improvements on tail classes are shown in Figure 6. We
observe consistent improvements compared to the baseline.

4.4. Ablation Studies

We study some key elements in our IEM. We mainly
study the effectiveness of the region self-attention mecha-
nism, the effectiveness of local IEM, and the effectiveness
of global IEM. To demonstrate the effectiveness of the re-
gion self-attention mechanism, we replace the region self-
attention mechanism with a simple average pooling func-
tion. For ImageNet-LT and Places-LT, we conduct the abla-
tions on the closed-set setting. The results are shown in Ta-

ble 5. We observe that local IEM is essential to the success
of long-tailed classification, where local features are help-
ful for learning discriminative features from a few exam-
ples. The results show that our RSA is beneficial to encode
multi-scale region features. When it is replaced by a sim-
ple average pooling, the performance drops across all the
datasets. Note that the global memory is also an important
component. When the global memory is removed, the per-
formance drops more than 2% on ImageNet-LT, Places-LT,
and iNaturalist. It shows that global information is impor-
tant for classification on these datasets. Global representa-
tion offers a straightforward view for recognition as some
classes are about general scenes. These results demonstrate
the effectiveness of our IEM and RSA.

5. Conclusion

We introduce a novel Inflated Episodic Memory (IEM)
module for long-tailed visual recognition. We investigate
the effectiveness of region self-attention (RSA) for region
feature encoding. We validate the effectiveness of IEM and
RSA on long-tailed image and video classification. In the
future, we will focus on designing better re-sampling strate-
gies that complement our framework.
Acknowledgements. This work is supported by ARC
DP200100938.
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