
Faster Meta Update Strategy for Noise-Robust Deep Learning

Youjiang Xu1 Linchao Zhu2 Lu Jiang3 Yi Yang2

1Baidu Research 2ReLER, University of Technology Sydney 3Google Research
youjiangxu@gmail.com, lujiang@google.com, {linchao.zhu, yi.yang}@uts.edu.au

Abstract

It has been shown that deep neural networks are prone
to overfitting on biased training data. Towards address-
ing this issue, meta-learning employs a meta model for
correcting the training bias. Despite the promising per-
formances, super slow training is currently the bottleneck
in the meta learning approaches. In this paper, we intro-
duce a novel Faster Meta Update Strategy (FaMUS) to re-
place the most expensive step in the meta gradient compu-
tation with a faster layer-wise approximation. We empir-
ically find that FaMUS yields not only a reasonably accu-
rate but also a low-variance approximation of the meta gra-
dient. We conduct extensive experiments to verify the pro-
posed method on two tasks. We show our method is able
to save two-thirds of the training time while still maintain-
ing the comparable or achieving even better generalization
performance. In particular, our method achieves the state-
of-the-art performance on both synthetic and realistic noisy
labels, and obtains promising performance on long-tailed
recognition on standard benchmarks. Code are released at
https://github.com/youjiangxu/FaMUS.

1. Introduction
Deep neural networks (DNNs) have achieved impressive

results in various computer vision applications such as im-
age classification [23, 13], object detection [41, 39, 29], and
semantic segmentation [12]. A notable issue is that DNNs
are prone to memorizing the training data [60, 47], aggra-
vating training set bias such as noisy training labels [60]
or imbalanced class distributions [11, 64]. This signifi-
cantly degrades the generalization capabilities and results in
skewed classifiers or degenerated feature representations.

Numerous works have been proposed to tackle this issue
(e.g. [20, 9, 40, 24, 28]). Among them, meta-learning [40,
43, 51] has recently emerged as an effective framework to
mitigate the training data bias. In a nutshell, it employs a
meta-model to correct bias by providing a more precise es-
timation of the training data. The meta-model is updated
by stochastic gradient descent using the meta gradient (or

0 10 20 30 40 50 60 70 80 90 100
Training time on four GPUs in hours (h)

30

40

50

60

70

80

To
p-

1
ac

cu
ra

cy
 (%

)

74.576.575.0

MW-Net
Ours

(a) Top-1 Accuracy vs. Training time

MN-Net Ours0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

G
PU

 T
im

e
in

 S
ec

on
d

(s
) Virtual Forward

Virtual Backward
Meta Forward
Meta Backward
Actual Forward
Actual Backward

(b) Cost in One Iteration

5 10 15 20 25 30 35 40
Training Epoch

-0.004
-0.002

0
0.002
0.004
0.006

G
ra

di
en

t

MW-Net
Ours

(c) Gradient Variance

Figure 1: (a) Top-1 accuracy vs. Training time (in hours)
on the WebVision dataset [26]. We apply our method on the
MW-Net model [43] and train them using the identical hard-
ware platform of four NVIDIA V100 GPUs. (b) The aver-
age GPU running time (in seconds) of each step in MW-Net
per training iteration. Inception-ResNet V2 is used as the
backbone. (c) The meta gradient during the training pro-
cess. The solid line denotes the mean and the shaded region
show the standard deviation.

the high-order gradient) computed on a small proportion of
validation data that is assumed available during training1.
Recently, meta-learning approaches such as L2R [40], MW-
Net [43], and MLC [51] have shown superior performance
on several public benchmarks such as CIFAR [22], WebVi-
sion [26], and Clothing1M [54].

Despite the promising empirical results [50, 44], slow
training is currently the bottleneck that prevents meta-
learning from being applied in many applications. The
training time of the meta-learning model is approximately

1The extra validation dataset is not a requirement in meta-learning. As
in our experiments, we can use a subset of pseudo-labeled training data as
the validation data. In this case, no extra labels or data are used.

3∼7 times more than the regular DNN training time. For in-
stance, it could take 4 days with 4 NVIDIA V100 GPUs to
train MW-Net [43] on a mini subset of WebVision [26, 20]
of only ∼50K images.

To understand why the meta-learning approaches are
computationally intensive, we may divide the training
into three stages: Virtual-Train, Meta-Train, and Actual-
Train [51], where each stage consists of a forward and
a backward step. Figure 1(b) summarizes the GPU time
for each stage using a representative meta-learning model
called MW-Net [43]. We find more than 80% of the total
computation comes from the Meta-Train backward step in
which the meta gradient is computed with respect to the
loss on the validation data. In this step, the meta gradient
is back-propagated through every layer of the network all
the way back to the meta-model to update its parameters.
Since the regular training does not have such a step, this
overhead cost rapidly becomes significant as the number of
layers grows in the deep networks.

In this work, we aim at improving the training efficiency
of meta-learning while maintaining the generalization ca-
pability. We propose a new Meta-Train step, named Faster
Meta Update Strategy (FaMUS), to efficiently compute the
meta gradient. The plausibility of our method relies on the
important finding that the total meta gradient can be reason-
ably approximated by the meta gradient accumulated from
only a few network layers. As a result, instead of accu-
mulating meta gradients from all layers in the Meta-Train
step, we design a gradient sampler that is learned to de-
cide, whether or not, to aggregate the meta gradient for each
layer. When the learnable gradient sampler is turned off,
the meta gradient computation is hence circumvented for
the corresponding layer. This saves a considerable amount
of computation especially when the gradient samplers for
lower layers are turned off.

More importantly, we find the meta gradient yielded by
the FaMUS has lower variance. Figure 1(c) shows the to-
tal meta gradient of the ground-truth (blue curve) and the
approximation by the FaMUS (red curve). It shows that
our approximation is reasonably close to the mean but has
a much lower variance. We hypothesize this is because the
FaMUS learns to select a small number of most informative
layers which hence reduces the noisy or redundant signals in
the meta gradient. As shown in [35, 34], reduction in gradi-
ent variance results in faster and more stable optimization.
We observe similar results in our experiments where our
method is able to improve the generalization performance
of the recent meta-learning methods on noisy training data.

We conduct extensive experiments to verify the effi-
ciency and efficacy of the proposed method. We demon-
strate two benefits of our method in overcoming corrupted
training labels. First, it speeds up the recent meta-learning
methods [40, 43, 51] by at least three times while main-

taining the comparable or even better generalization perfor-
mance. For example, Figure 1(a) shows a faster and better
convergence when we applied our method on the MW-Net
model. Second, our method achieves new state-of-the-art
performance on multiple benchmarks for both synthetic la-
bel noise and realistic label noise, including the challeng-
ing CNWL benchmark [18]. The comparison is fair as our
meta-model is learned without using any extra data. In
addition, we also validate our method on the long-tailed
recognition task. On the long-tailed CIFAR dataset [6], our
method yields competitive performance compared to the re-
cent strong baseline methods.

The contributions of this paper are three-fold. (1) We
propose a new Faster Meta Update Strategy to efficiently
learn to approximate the meta gradient, which halves two-
thirds of the training time of the recent meta-learning meth-
ods [40, 43, 51]. (2) We empirically show our approach
reduces the variance of the meta gradient and improves the
generalization performance of the meta-learning model. (3)
Our method achieves state-of-the-art performance on sev-
eral benchmarks with noisy labels.

2. Related Work
Corrupted/Noisy training labels. Numerous methods
have been recently proposed to learn robust deep networks
that can overcome corrupted or noisy training labels. These
methods address this problem from a variety of directions.
For example, several works [8, 37, 53, 47, 56, 1, 51] mod-
eled the noise distribution or the transition matrix to correct
noisy training samples. Other approaches tried to reduce the
weights assigned to noisy samples [33, 20, 18, 45, 43, 55].
Another effective strategy is to directly identify the clean
samples and only select them to train the models [9, 58,
36, 38, 24, 52]. Other contributions in this direction in-
clude data augmentation [61, 27, 5], semi-supervised learn-
ing [15, 48, 24, 62], etc.

Among them, meta-learning [40, 43, 25, 51] has recently
emerged as an effective framework for addressing the noisy
labels. These methods all learn a meta-model from clean
validation examples but differ in the specific ways to correct
the biased training labels. For example, L2R [40] directly
adjusts the weight for each example. MLNT [25] simulates
regular training with synthetic noisy labels. MW-Net [43]
learns an explicit weighting function. MLC [51] estimates
the noise transition matrix.

This paper aims at improving the training efficiency of
the meta-learning models. The results show our method not
only significantly reduces the training time of three recent
meta-learning approaches but also improves their robust-
ness to noisy labels on several standard benchmarks.
Long-tailed recognition. Long-tailed recognition has been
an active research field in computer vision [3, 7, 10, 42, 32,
57, 30, 21, 6, 2, 16, 63, 64]. For example, [3, 10] aimed to

increase the number of minority classes by oversampling,
while Drummond et al. [7] solved this problem by reducing
the number of data in majority classes. Some recent stud-
ies [42, 32] proposed to balance the number of data for each
class. [57, 30] applied the knowledge learned from the head
classes to the tail. [21, 6, 2, 63] aimed to manipulate the
loss on the class-level based on the data distribution.

Meta-learning based methods [40, 43, 16] have recently
achieved promising results on the long-tailed recognition
task, in which the meta-model is learned to assign larger
weights to the examples of the long-tailed classes. Similar
to the noisy labels, meta-learning suffers from slow training
speed [40, 43, 51, 16]. We show our method improves the
efficiency and accuracy of the meta-learning methods on the
long-tailed recognition task, and achieves competitive per-
formance compared with recent strong baselines.

3. Preliminary on Meta-learning
In this section, we briefly introduce the preliminary on

meta-learning methods [40, 43] that learn robust deep neu-
ral networks from noisy labels by reweighting the training
data. We follow the notation in the MW-Net [43] model us-
ing corrupted labels as an example. Alternative formulation
can be found in [40, 51, 50].

Let Dtrain = {(xtrai , ytrai)}Ni=1 be a noisy training set
of N examples, where xtrai is the i-th training image and
ytrai ∈ {0, 1}c is its one-hot label over c classes. Con-
sider a deep neural network (DNN) as the base model
Φ(·;w) with w denoting its parameters. Generally, we can
derive the optimal parameter w∗ by minimizing the soft-
max cross-entropy loss `(ŷ, y) over the training data, where
ŷ = Φ(x;w) is the prediction of the DNN and y is the given
label for the input image x.

In the meta-learning methods [40, 43], there is an out-
of-sample validation set Dval = {(xvalj , yvalj)}Mj=1, where
(xvalj , yvalj) denote the j-th example. M is the size of Dval
and M � N . The extra validation dataset is not always
required in meta-learning. See the discussion in Section 5.3.

The meta-learning method employs a meta-model (e.g.,
instanced by a multilayer perceptron network (MLP) with
only one hidden layer [43]) to learn a weight for each
training example. Let Ψ(·; θ) denote the meta-model,
parametrized by θ, which maps a loss to a weight scalar.
A meta-model can be regarded as a learnable derivation
of the self-paced function in SPCL [19]. Let Ltrai (w) =
`(Φ(xtrai ;w), ytrai) be the loss for the i-th example in
Dtrain. The optimal parameter w∗ can be obtained by com-
puting the weighted loss:

w∗(θ) = argmin
w

1

N

N∑
i=1

Vtrai (θ)Ltrai (w), (1)

where Vtrai (θ) = Ψ(Ltrai (w); θ) is the generated weight for

the i-th training example.
The meta-model is optimized by minimizing the valida-

tion loss:

θ∗ = argmin
θ

1

M

M∑
j=1

Lvalj (w∗(θ)), (2)

where Lvalj (w∗(θ)) = `(Φ(xvalj ;w∗(θ)), yvalj) is the loss
for the j-th example in the validation set.

Solving Eq. (1) and Eq. (2) by alternating minimization
is intractable for mini-batch gradient descent. Alternatively,
an online optimization method is used instead which com-
prises three steps: Virtual-Train, Meta-Train, and Actual-
Train [52].

Consider the t-th iteration. Given a training mini-batch
Btrain = {(xtrai , ytrai)}ni=1 and a validation mini-batch
Bval = {(xvalj , yvalj)}mj=1, n and m stand for the number
of the examples in the mini-batch. For the Virtual-Train, an
one-step “virtually” updated DNN can be derived by:

ŵ(θ) = w − α 1

n

n∑
i=1

Vtrai (θ)∇wLtrai (w), (3)

where α is the learning rate for the DNN.w is the parameter
of the base DNN at the current iteration. This step is called
Virtual-Train because ŵ(θ) will not be used to update the
parameter of the base DNN.

Then for the Meta-Train, with the latest ŵ(θ), the meta-
model is updated by:

θ′ = θ − β 1

m

m∑
j=1

∇θLvalj (ŵ(θ)). (4)

Similarly, β is the learning rate for the meta-model. θ′

is the parameter of the updated meta-model. Notice that
1
m

∑m
j=1∇θLvalj (ŵ(θ)) is called meta gradient, which is

expensive to compute. More details will be discussed in
Section 4.1.

Finally, in the last step (Actual-Train), the updated meta-
model Ψ(·; θ′) is used to update the base DNN model using:

w′ = w − α 1

n

n∑
i=1

Vtrai (θ′)∇wLtrai (w), (5)

where Vtrai (θ′) is the weight for the i-th example computed
by the latest meta-model. This step is called Actual-Train
because w′ will be used to actually update the parameter of
base DNN. Therefore, w′ becomes the w in Eq. (3) in the
(t+ 1)-th iteration.

4. Faster Meta Update Strategy
In this section, we introduce a Faster Meta Update Strat-

egy (FaMUS) to efficiently approximate the total meta gra-
dients by a layer-wise meta gradient sampling procedure.

!"
reweight

!#$%

�

&'()*+ !% !#…

ℒ'()*+ Ψ(/ ; 1)

Meta Model

&3)4 5!% 5!" 5!#$% 5!#…

7̅%'() 7̅"'() 7̅#$%'() 7̅#'()Γ

ℒ3)4

Γ Γ ΓΓ

9#$% = 0 9# = 19" = 09% = 0 94 = 1

7̅4'()

�

�

�

�

�

�

�

Virtual-Train Forward

Virtual-Train Backward

Meta-Train Forward

Meta-Train Backward

One-step update

Layer-wise Gradient Sampling

Accumulating

Stop Accumulating

update
g=

{5!4}4@%#
Ave-Pool

!4…

5!4…

Figure 2: Illustration of the proposed method. We propose a new Meta-Train step, named Faster Meta Update Strategy (i.e.,
the red line 4©), which learns a gradient sampler (denoted as Γ) to aggregate the meta gradient for each layer. In this figure,
the meta gradients from the l-th and L-th layers would be aggregated to compute g′ and used to update the meta-model Ψ.

Figure 2 presents the overall training process, where the red
line indicates the proposed method. Specifically, we learn
a gradient sampler to decide, whether or not, to aggregate
the meta gradient for each layer. In the following, we first
explain how the meta gradient can be calculated in a layer-
wise fashion in Section 4.1. Next, we detail the gradient
sampler in Section 4.2 and the final objective for the meta-
model in Section 4.3. The full algorithm for Faster Meta
Update Strategy is shown in the supplementary materials.

4.1. Layer-wise meta gradient computation

In this section, we discuss the meta gradient computation
and show how it can be calculated in a layer-wise fashion.
For notational convenience, we simplify Eq. (4) as:

θ′ = θ − β × g, (6)

where g = 1
m

∑m
j=1∇θLvalj (ŵ(θ)) denotes the meta gra-

dient, which has shown to be computational intensive in re-
cent studies [40, 43, 51].

Without loss of generality, suppose that the base DNN
has L layers denoted as Φ(·; {wl}Ll=1), where wl represents
the parameter for the l-th layer.

We rewrite the computation of meta gradient using the
chain rule:

g =
1

m

m∑
j=1

∂Lvalj (ŵ(θ))

∂ŵ(θ)

n∑
i=1

∂ŵ(θ)

∂Vtrai (θ)

∂Vtrai (θ)

∂θ

∝ −α
nm

L∑
l=1

(n∑
i=1

(m∑
j=1

Gi,j,l

)
∂Vtrai (θ)

∂θ

)
,

(7)

where Gi,j,l = (
∂Lval

j (ŵ)

∂ŵl
)T

∂Ltra
i (w)
∂wl

is the dot product be-
tween the gradient from the j-th validation loss w.r.t. ŵl and
the gradient from the i-th training loss w.r.t. wl. Intuitively,
Gi,j,l can be viewed as the similarity between the i-th train-
ing example and the j-th validation example according to

the l-th layer of the base network. The derivation of Eq. (7)
can be found in the supplementary materials.

Two observations can be drawn from Eq. (7). First, it ex-
plains the slow Meta-Train step in meta-learning, i.e. com-
puting the meta gradient involves enumerating all training
examples, all validation examples, and all layers. Second,
it shows that the meta gradient can be calculated by first
computing the gradient

∑
i,j Gi,j,: within each individual

layer and then aggregating the values together. This finding
lays a foundation for the proposed layer-wise meta gradient
approximation.

4.2. Layer-wise gradient sampler

We propose to approximate the total meta gradient by
aggregating meta gradients sampled from a few layers. We
learn a gradient sampler to accumulate the meta gradient for
each layer, and formulate the gradient sampler, denoted as
Γ(·; ηl), as follow:

rl = Γ(ḡtral ; ηl)

= Γ(Avg-Pool(
1

n

n∑
i=1

Vtrai (θ)
∂Ltrai (w)

∂wl
); ηl).

(8)

The output to the gradient sampler is the discrete activation
status rl ∈ {0, 1}.

The input of the gradient sampler is the average gradi-
ent ḡtral obtained from the Virtual-Train backward step. To
be more specific, suppose the gradient tensor for the con-
volutional kernel has the shape RDout×Din×K1×K2 where
Dout and Din are the output/input dimensions; K1 and K2

are the kernel sizes. The Avg-Pool operator averages the
gradient tensor across all except the first dimensions while
leaving the bias term unchanged. Therefore, the dimension
for ḡtral ∈ R1×Dout . The Avg-Pool performs a similar oper-
ation for the fully connected layer by settingK1 = K2 = 1.

For efficiency, we adopt a lightweight design for the gra-
dient sampler and implement it by two fully-connected (FC)
layers: FC1 and FC2, where the first layer FC1 is followed
by a PReLU layer and FC2 by the “Gumbel-softmax” op-
erator [17]. The hidden size of the fully connected layer is
fixed to 128 for all experiments.

Applying the gradient sampler to all layers gives:

g′ ∝ −α
nm

L∑
l=1

1[rl=1]

(n∑
i=1

(m∑
j=1

Gi,j,l

)
∂Vtra

i (θ)

∂θ

)
, (9)

where 1[rl=1] is the indicator function. As shown in Eq. (9),
the meta gradient for the l-th layer is accumulated only if the
gradient sampler is turned on (i.e. rl = 1).

Finally, we replace g in Eq. (6) with g′ to update the
meta-model.

4.3. Training objective for meta-model

The proposed gradient samplers are jointly optimized
with the meta-model. In addition to the cross-entropy loss
described in Lval in Eq. (4), we incorporate two auxiliary
losses to facilitate learning the gradient samplers.

The first loss is designed to prevent the gradient samplers
from activating too many layers. We introduce a loss Lr
regularizing the output of the gradient samplers:

Lr = ‖
L∑
l=1

rl −K‖22, (10)

where K is the expected number of layers to be activated.
Moreover, we add another loss (denoted as Lg) to facili-

tate learning the meta-model:

Lg = ‖ḡtraL − ḡvalL ‖22, (11)

where ḡtraL is the average gradient from training loss
discussed in Eq. (8). Likewise ḡvalL is the aver-
age gradient from the validation loss, i.e. ḡvalL =

Avg-Pool(1
m

∑m
j=1

∂Lval
j (ŵ)

∂ŵL
). This loss term Lg captures

the prior knowledge that the distance between validation
and training gradient should be close. Notice that we only
compute the gradients at the last layer L for efficiency.

Finally, the total loss to update the meta-model:

Lval = Lc + λ1Lr + λ2Lg, (12)

where Lc is the standard cross-entropy loss in Eq. (4). λ1
and λ2 are hyperparameters. We will examine the effective-
ness of these loss terms in the ablation study.

5. Experiments
We conduct extensive experiments on the noisy labeled

data to verify the efficiency and effectiveness of our method

Method Time (ms) CIFAR-10 CIFAR-100
20% 40% 60% 20% 40% 60%

MW-Net [43] 933 91.9 89.6 84.5 73.1 68.1 61.7
+FaMUS 284(3.3x) 92.9 90.5 85.8 73.6 69.4 62.9
L2R [40] 839 90.5 86.9 82.2 69.3 62.8 50.8
+FaMUS 244(3.4x) 91.3 87.6 82.8 70.7 65.5 51.6

Table 1: Comparison with MW-Net and L2R on CIFAR-10
and CIFAR-100. Percentage numbers represent the noise
rate. “Time (ms)” denotes the average running time per
training iteration on a single NVIDIA V100 GPU.

Method Time (ms) 10% 20% 30% 40%
MLC [51] 265 85.23 84.28 82.10 79.89
+FaMUS 84(3.1x) 87.28 85.00 82.65 80.41

Table 2: Comparison with MLC on CIFAR-10 with four
different noise rates: {10%, 20%, 30%, 40%}. “Time (ms)”
denotes the average running time per training iteration on a
single NVIDIA V100 GPU.

for learning robust DNN models. Specifically, we show
our method improves the efficiency and generalization per-
formance of the meta-learning methods in Section 5.1.
Section 5.2 presents ablation studies to verify our design
choices. Section 5.3 compares with the state-of-the-art re-
sults on synthetic and realistic noisy labels. In addition, we
also experiment on the long-tailed recognition task in Sec-
tion 5.4. The implementation details and more experimental
results are presented in the supplementary materials.

5.1. Comparison with meta-learning methods

This subsection shows our method improves the ef-
ficiency and generalization performance of three meta-
learning methods: L2R [40], MW-Net [43], and MLC [51].

Setups. We apply our method to three meta-learning
methods using their official code and train them under the
same settings as reported in their papers [40, 43, 51]. This
includes using the same clean validation set to learn the
meta-model. The experiments are conducted on the stan-
dard CIFAR [22] benchmarks. Following [51], we use the
symmetric label noise in which a percentage of true labels
are randomly replaced with all possible labels, and report
the best peak accuracy which is the maximum accuracy on
the clean test set during training.

Implementation details. The proposed gradient sam-
plers are jointly optimized with the meta-model by SGD
with a momentum of 0.9. The learning rate is fixed as 0.1
throughout the training. λ1 and λ2 are both set to 0.1. K is
set to 4.

Table 1 and Table 2 show the results on the CIFAR
datasets, where “Time” column lists the average running
time (in millisecond) per training iteration on a single
NVIDIA V100 GPU. It shows that our method acceler-
ates the training time of the three meta-learning meth-
ods [40, 43, 51] by at least 3 times. More importantly, our

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Step

10

20

30

40

50

60

To
p-

1
A

cc
ur

ac
y

(%
) MW-Net

Random
MW-Net+FaMUS

(a) Top-1 Acc vs. Training Step

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Step

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Te
st

 L
os

s

MW-Net
Random
MW-Net+FaMUS

(b) Test loss vs. Training Step

Figure 3: Test curves under CIFAR-100 with 60% noise.

0 25 50 75
Training Epoch

-0.006

-0.003

0

0.003

0.006

G
ra

di
en

t

MW-Net

0 25 50 75
Training Epoch

Random

0 25 50 75
Training Epoch

MW-Net+FaMUS

Figure 4: Variance of the meta gradient produced by differ-
ent methods during the training. All models are trained on
the CIFAR-100 dataset with 60% noise.

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Clean Example Weight

0

1000

2000

3000

4000

5000

N
um

be
r

CIFAR-100_60% Noise_6K Step

MW-Net
Random
MW-Net+FaMUS

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Clean Example Weight

0

2000

4000

6000

8000

10000

12000

14000

16000

N
um

be
r

CIFAR-100_60% Noise_20K Step

MW-Net
Random
MW-Net+FaMUS

Figure 5: Weight distribution over the clean examples in
the 6K (left) and 20K (right) training step. All models are
trained on the CIFAR-100 dataset with 60% noise.

method improves their generalization performance across
all noise rates. To understand the training dynamics, we
compare three methods: the best baseline MW-Net [43],
the MW-Net with our method, and the Random MW-Net
in which each layer is randomly sampled to compute the
meta gradient. Figure 3 shows the training curves on the
CIFAR-100 dataset with 60% noise. We observe that our
method (MW-Net + FaMUS) has the lowest test loss and
the highest accuracy throughout the training.

We hypothesize that this benefit is related to the low vari-
ance in the meta gradient learned by our method. For ex-
ample, Figure 4 visualizes the variance of the meta gradient
during training and shows our method yields a low-variance
approximation of the meta gradient. These results suggest
that FaMUS can learn to select a small number of most in-
formative layers to compute the meta gradient, which hence
reduces the noisy learning signals in the corrupted training
data. This observation agrees with the finding in [35, 34]
that reduction in gradient variance results in faster and more
stable optimization. To substantiate this hypothesis, we ex-
amine the meta-models by plotting their weight distribution
on the clean examples in Figure 5. We find that in both the
early (6K step) and late training stages (20K step), the meta-
models learned by our method tend to assign larger weights

Lc Lr Lg Time (ms) CIFAR-10 CIFAR-100
X 933 84.5 61.7
X X 446 85.2 62.2
X X 275 85.3 62.0
X X X 284 85.8 62.9

Table 3: Accuracy vs. Training Time on CIFAR-10 and
CIFAR-100 with 60% noise. “Time (ms)” denotes the aver-
age running time per training iteration on a single NVIDIA
V100 GPU.

Model Time (ms) ACC
MW-Net [43] 933 61.7

Pre-specified Block
b = 4 718 60.8
b = 8 569 61.9
b = 12 326 61.4

Random Layers
s = 4 764 61.2
s = 8 826 61.6
s = 16 899 62.1

FaMUS (K = 4) 284 62.9

Table 4: Comparison of sampling strategies on CIFAR-100
with 60% noise. b ∈ [1, 12] is the index of the residual
block. s is the number of randomly selected layers. Our
method samples from about 4 layers by setting K = 4 in
Eq. (10). “Time (ms)” denotes the average running time per
training iteration on a single NVIDIA V100 GPU.

to more clean examples. The results in Table 1, Table 2,
and Figure 3 demonstrate that our method improves the effi-
ciency and generalization performance of the meta-learning
methods. More results can be found in the Appendix C.

5.2. Ablation study

We conduct the ablation studies using the MW-Net
method with the WideResNet-28-10 backbone model [59].

Loss function. Table 3 analyzes the impact of the auxil-
iary loss components in Eq. (12) on the CIFAR datasets with
60% noise. “Lc” denotes the loss of the base meta-learning
model (MW-Net). We find that adding “Lr” significantly
reduces the training time since it limits the number of layers
to be activated. When incorporating both “Lr” and “Lg”,
our method achieves the best result and improves both the
efficiency and accuracy of the base MW-Net model.

Sampling strategy. To verify the design of the proposed
gradient sampler, we compare with two predefined sam-
pling strategies: pre-specified block and random layers. In
the Pre-specified Block, we select a residual block (indexed
by b and b ∈ [1, 12]), which consists of two convolutional
layers and two batch normalization layers, to compute the
meta gradients. In the Random Layers, we uniformly select
s layers to compute the meta gradients.

Table 4 shows the comparison on the CIFAR-100 dataset
with 60% noise rate. For the Pre-specified Block, we find
that computing the meta gradient from the top residual

Method
CIFAR-10 CIFAR-100

40% 60% 40% 60%
Co-teaching [9] 74.81 73.06 46.20 35.67
L2R [40] 86.92 82.24 62.81 50.81
MW-Net [43] 89.60 84.49 68.11 61.71
MentorNet† [20] 91.20 74.20 66.80 58.80
Mixup† [61] 91.50 86.80 66.80 58.80
M-correction [1] 92.80 90.30 70.10 59.50
MentorMix [18] 94.20 91.30 71.30 64.60
DivideMix [24] 94.90 94.30 75.20 72.00
Ours 95.37 94.97 75.91 73.58

±0.15 ±0.11 ±0.19 ±0.28

Table 5: Comparison with the state-of-the-art on CIFAR-10
and CIFAR-100 with 40% and 60% noise rates. † denotes
the results are reported by [18].

block (b = 12) is the most efficient way, which is about
2x faster than using the bottom block (b = 4). As for the
Random Layers, the accuracy is improved as the number of
layers s increases, while the running time shows a different
trend. Our method outperforms all the compared methods
both in efficiency and accuracy, suggesting the necessity of
the proposed gradient sampler.

5.3. Comparison to state-of-the-art

This subsection compares our method with the state-of-
the-art robust learning methods in overcoming both syn-
thetic and realistic noisy labels.

Datasets. For the realistic noisy labels, we employ three
datasets: (mini) WebVision 1.0 [26], Clothing1M [54], and
Controlled Noisy Web Labels (CNWL) [18]. WebVision
contains 2.4 million images with noisy labels categorized
into the same 1,000 classes as in the ImageNet ILSVRC12.
Following the previous works [20, 4], we use the first 50
classes of the Google image subset as the training data.
Clothing1M has 1 million noisy labeled clothing images
crawled from online shopping websites. CNWL is a re-
cent benchmark of controlled label noise from the web.
Uniquely, it allows for comparing methods on various rates
of realistic label noises. We use the Red Mini-ImageNet
set [49] that consists of 50K images from 100 classes for
training and 5K images for testing.

Implementation details. To fairly compare with the the-
state-of-art, we use a subset of pseudo labeled training data
as the meta-learning validation set. Inspired by [24], we
employ the Gaussian Mixture Model (GMM) to divide the
training data into a pseudo-clean and a pseudo-noisy label
set. By doing so, no extra clean labels nor data are used to
train the meta-model. We find using the pseudo validation
set notably improves the performance because the pseudo
validation set is much larger than the clean validation set
used in the meta-learning method [43]. More discussions
can be found in the Appendix E.

Method
WebVision ILSVRC12

top1 top5 top1 top5
F-correction [37] 61.12 82.68 57.39 82.36
Decoupling [33] 62.54 84.74 58.26 82.26
D2L [31] 62.68 84.00 57.80 81.36
MentorNet [20] 63.00 81.40 57.80 79.92
Co-teaching [9] 63.58 85.20 61.48 84.70
Iterative-CV [4] 65.24 85.34 61.60 84.98
MW-Net [43] 74.52 88.89 72.60 88.80
MentorMix [18] 76.00 90.20 72.90 91.10
DivideMix [24] 77.32 91.64 75.20 90.84
Ours 79.40 92.80 77.00 92.76

Table 6: Comparison with the state-of-the-art on (mini) We-
bVision dataset. Numbers denote top-1 (top-5) accuracy on
the validation set of WebVision and ImageNet ILSVRC12.

Method 20% 40% 60% 80% Mean
Cross-entropy 47.36 42.70 37.30 29.76 39.28
Mixup [61] 49.10 46.40 40.58 33.58 42.41
DivideMix [24] 50.96 46.72 43.14 34.50 43.83
MentorMix [18] 51.02 47.14 43.80 33.46 43.85
Ours 51.42 48.06 45.10 35.50 45.02

Table 7: Results on Controlled Noisy Web Labels [18].

For experiments on CIFAR-10, CIFAR-100, and CNWL,
we employ the PreAct ResNet-18 [14] as the base DNN.
For experiments on Clothing1M and WebVision, we use
ResNet-50 [13] and Inception-ResNet V2 [46], respectively.

Baselines. We briefly introduce the baselines: (1) Co-
teaching [9], Decoupling [33], and JoCoR [52] train two
networks to improve each other. (2) F-correction [37] es-
timates the noise transition matrix to correct the loss func-
tion. (3) D2L [31] learns to monitor the dimensionality of
subspaces and adapts the loss functions accordingly. (4)
Iterative-CV [4] iteratively increases the number of the se-
lected samples to train the networks. (5) MentorNet [20] is
an example-weighting method based on curriculum learn-
ing. MentorMix [18] further combines the MentorNet with
the Mixup [61]. (6) DivideMix [24] addresses the cor-
rupted labels in a semi-supervised learning fashion. (7) M-
correction [1] estimates the probability of a sample being
mislabelled and then corrects the loss accordingly.

5.3.1 Results on synthetic noisy labels

Table 5 shows the results on the CIFAR-10 and CIFAR-
100 datasets with symmetric label noises. For the compared
methods, we directly cite the reported numbers in their pa-
pers except for MW-Net [43] and L2R [40] where we report
the reproduced results. For our method, we report the aver-
age and standard deviation of over three training trials using
different random seeds. The gains over baseline methods
are statistically significant at the p-value level of 0.05, ac-
cording to the one-tailed t-test. These results illustrate the

Method
Long-Tailed CIFAR-10 Long-Tailed CIFAR-100

100 50 20 10 100 50 20 10
CE loss 70.36 74.81 82.23 86.39 38.32 43.85 51.14 55.71
Focal Loss† [28] 70.38 76.71 82.76 86.66 38.41 44.32 51.95 55.78
CB Focal† [6] 74.57 79.27 84.36 87.49 39.60 45.32 52.59 57.99
LDAM-DRW [2] 77.03 - - 88.16 44.70 - - 59.59
BBN [63] 79.82 82.18 - 88.32 42.56 47.02 - 59.12

L2R† [40] with CE loss 74.16 78.93 82.12 85.19 40.23 44.44 51.64 53.73
MW-Net [43] with CE loss 75.21 80.06 84.94 87.84 42.09 46.74 54.37 58.46
[16] with CE loss 76.41 80.51 86.46 88.85 43.35 48.53 55.62 59.58
[16] with LDAM 80.00 82.34 84.37 87.40 44.08 49.16 52.38 58.00
MW-Net with CE loss + FaMUS 79.30 83.15 87.15 89.39 45.60 49.56 56.22 60.42
MW-Net with LDAM loss + FaMUS 80.96 83.32 86.24 87.90 46.03 49.93 55.95 59.03

Table 8: Top-1 test accuracy of ResNet-32 on the long-tailed CIFAR-10 and CIFAR-100 with four imbalanced factors
{100, 50, 20, 10}. Methods in the bottom block use extra clean data. The best performance is in bold and the second
best is underscored. † denotes the results are reported by [2].

effectiveness of our method on the synthetic noisy labels.

5.3.2 Results on realistic noisy labels

Table 6 shows the results on the WebVision dataset. As
shown, our method consistently outperforms the baselines,
achieving the best accuracy on the validation sets of We-
bVision and ImageNet. In particular, our method per-
forms favorably against very recent methods such as Men-
torMix [18] and DivideMix [24] in the top-1 accuracy.

Table 7 shows the results on the CNWL dataset. We im-
plement several strong baselines using their official codes
released on the CIFAR-100 dataset, e.g., MentorMix [18].
Note that in order to use their implementation, we down-
sample the images of the CNWL Mini-ImageNet dataset
from 84x84 to 32x32. This results in new benchmark num-
bers to compare our baseline methods, and supplements
[18]’s results on 32x32 images. More details are discussed
in the Appendix E. Table 7 shows that our method outper-
forms all baseline methods on the realistic web noisy labels.
The result is notable because 1) it verifies our method on
the challenging CNWL dataset; 2) it demonstrates our con-
sistent improvement across all noise rates as a useful and
robust feature since the underlying noise rate is often un-
known in practice.

We also apply our method on the Clothing1M dataset,
and achieve 74.4% in top-1 accuracy without using extra
clean data, which is comparable to recently published meth-
ods. The results on the above three datasets demonstrate
that our method trained with a noisy validation set is effec-
tive for addressing the realistic noisy labels.

5.4. Long-tailed recognition task

In addition to the noisy training label problem, we also
evaluate our method on the long-tailed recognition task.

Datasets and implementation details. Four imbal-
anced factors {100, 50, 20, 10} are applied on the long-

tailed CIFAR-10 and CIFAR-100 [6]. The number of train-
ing samples for each class is randomly removed by niµi,
where i indicates the class index, ni is the original number
of the training samples for the i-th class, and µ ∈ (0, 1).
The imbalanced factor is the ratio between the largest and
the smallest class. Following [43, 16], we do not change the
test set and select ten training images per class as the clean
validation set. Our method is implemented on the MW-Net
model [43] with the ResNet-32 backbone [13].

From Table 8, we find our method consistently outper-
forms previous meta-learning based methods [40, 43, 16].
Moreover, our method accelerates the training of the meta-
learning model MW-Net by 2.9 times. It is noteworthy
that even compared to the very recent approaches (e.g., im-
proved L2R [16]), our method still obtains a reasonable
performance gain, which illustrates the effectiveness of our
method on the long-tailed recognition task.

6. Conclusion
In this paper, we discuss a novel Faster Meta Update

Strategy (FaMUS) to efficiently approximate the meta gra-
dients by a layer-wise meta gradient sampling fashion. We
empirically show that our method yields not only an accu-
rate but also a low-variance approximation of the meta gra-
dient. The experimental results demonstrate that FaMUS is
able to reduce two-thirds of the training time of the meta-
learning methods, while achieving a better generalization
performance. Our method yields the state-of-the-art perfor-
mance to address the noisy label problem, and obtains com-
petitive performance on the long-tailed recognition task.

We find meta-model training is considerably influenced
by the quantity and quality of the pseudo-clean label set.
Future research in this area may include improving the ro-
bustness on limited validation data or low-quality pseudo
validation data, in addition to further closing the gap in
training time.

References
[1] Eric Arazo, Diego Ortego, Paul Albert, Noel E O’Connor,

and Kevin McGuinness. Unsupervised label noise modeling
and loss correction. In ICML, 2019. 2, 7

[2] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga,
and Tengyu Ma. Learning imbalanced datasets with label-
distribution-aware margin loss. In NeurIPS, 2019. 2, 3, 8

[3] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and
W Philip Kegelmeyer. Smote: synthetic minority over-
sampling technique. Journal of artificial intelligence re-
search, 16:321–357, 2002. 2

[4] Pengfei Chen, Benben Liao, Guangyong Chen, and Shengyu
Zhang. Understanding and utilizing deep neural networks
trained with noisy labels. In ICML, 2019. 7

[5] Yong Cheng, Lu Jiang, Wolfgang Macherey, and Jacob
Eisenstein. Advaug: Robust adversarial augmentation for
neural machine translation. In ACL, 2020. 2

[6] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge
Belongie. Class-balanced loss based on effective number of
samples. In CVPR, 2019. 2, 3, 8

[7] Chris Drummond, Robert C Holte, et al. C4. 5, class im-
balance, and cost sensitivity: why under-sampling beats
over-sampling. In Workshop on learning from imbalanced
datasets II, volume 11, pages 1–8. Citeseer, 2003. 2, 3

[8] Jacob Goldberger and Ehud Ben-Reuven. Training deep
neural-networks using a noise adaptation layer. In ICLR,
2017. 2

[9] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao
Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama. Co-
teaching: Robust training of deep neural networks with ex-
tremely noisy labels. In NeurIPS, 2018. 1, 2, 7

[10] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao.
Borderline-smote: a new over-sampling method in im-
balanced data sets learning. In International conference on
intelligent computing. Springer, 2005. 2

[11] Haibo He and Edwardo A Garcia. Learning from imbalanced
data. IEEE Transactions on knowledge and data engineer-
ing, 21(9):1263–1284, 2009. 1

[12] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In ICCV, 2017. 1

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 1, 7, 8

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In ECCV,
2016. 7

[15] Dan Hendrycks, Mantas Mazeika, Duncan Wilson, and
Kevin Gimpel. Using trusted data to train deep networks
on labels corrupted by severe noise. In NeurIPS, 2018. 2

[16] Muhammad Abdullah Jamal, Matthew Brown, Ming-Hsuan
Yang, Liqiang Wang, and Boqing Gong. Rethinking class-
balanced methods for long-tailed visual recognition from a
domain adaptation perspective. In CVPR, 2020. 2, 3, 8

[17] Eric Jang, Shixiang Gu, and Ben Poole. Categorical repa-
rameterization with gumbel-softmax. 2017. 5

[18] Lu Jiang, Di Huang, Mason Liu, and Weilong Yang. Beyond
synthetic noise: Deep learning on controlled noisy labels. In
ICML, 2020. 2, 7, 8

[19] Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and
Alexander Hauptmann. Self-paced curriculum learning. In
AAAI, 2015. 3

[20] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and
Li Fei-Fei. Mentornet: Learning data-driven curriculum for
very deep neural networks on corrupted labels. In ICML,
2018. 1, 2, 7

[21] Salman H Khan, Munawar Hayat, Mohammed Bennamoun,
Ferdous A Sohel, and Roberto Togneri. Cost-sensitive learn-
ing of deep feature representations from imbalanced data.
IEEE transactions on neural networks and learning systems,
29(8):3573–3587, 2017. 2, 3

[22] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 1, 5

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In NeurIPS, 2012. 1

[24] Junnan Li, Richard Socher, and Steven C.H. Hoi. Dividemix:
Learning with noisy labels as semi-supervised learning. In
ICLR, 2020. 1, 2, 7, 8

[25] Junnan Li, Yongkang Wong, Qi Zhao, and Mohan S Kankan-
halli. Learning to learn from noisy labeled data. In CVPR,
2019. 2

[26] Wen Li, Limin Wang, Wei Li, Eirikur Agustsson, and Luc
Van Gool. Webvision database: Visual learning and under-
standing from web data. arXiv preprint arXiv:1708.02862,
2017. 1, 2, 7

[27] Junwei Liang, Lu Jiang, and Alexander Hauptmann. Simaug:
Learning robust representations from simulation for trajec-
tory prediction. In ECCV, 2020. 2

[28] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In ICCV,
2017. 1, 8

[29] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In ECCV, 2016. 1

[30] Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang,
Boqing Gong, and Stella X Yu. Large-scale long-tailed
recognition in an open world. In CVPR, 2019. 2, 3

[31] Xingjun Ma, Yisen Wang, Michael E Houle, Shuo Zhou,
Sarah M Erfani, Shu-Tao Xia, Sudanthi Wijewickrema, and
James Bailey. Dimensionality-driven learning with noisy la-
bels. In ICML, 2018. 7

[32] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan,
Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe,
and Laurens van der Maaten. Exploring the limits of weakly
supervised pretraining. In ECCV, 2018. 2, 3

[33] Eran Malach and Shai Shalev-Shwartz. Decoupling” when
to update” from” how to update”. In NeurIPS, 2017. 2, 7

[34] Andrew Miller, Nick Foti, Alexander D’Amour, and Ryan P
Adams. Reducing reparameterization gradient variance. In
NeurIPS, 2017. 2, 6

[35] Arvind Neelakantan, Luke Vilnis, Quoc V Le, Ilya
Sutskever, Lukasz Kaiser, Karol Kurach, and James Martens.
Adding gradient noise improves learning for very deep net-
works. arXiv preprint arXiv:1511.06807, 2015. 2, 6

[36] Curtis G Northcutt, Lu Jiang, and Isaac L Chuang. Confident
learning: Estimating uncertainty in dataset labels. Journal of
Artificial Intelligence Research, 2021. 2

[37] Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon,
Richard Nock, and Lizhen Qu. Making deep neural networks
robust to label noise: A loss correction approach. In CVPR,
2017. 2, 7

[38] Geoff Pleiss, Tianyi Zhang, Ethan R Elenberg, and Kilian Q
Weinberger. Identifying mislabeled data using the area under
the margin ranking. arXiv preprint arXiv:2001.10528, 2020.
2

[39] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In CVPR, 2016. 1

[40] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urta-
sun. Learning to reweight examples for robust deep learning.
In ICML, 2018. 1, 2, 3, 4, 5, 7, 8

[41] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. IEEE transactions on pattern analysis
and machine intelligence, 39(6):1137–1149, 2016. 1

[42] Li Shen, Zhouchen Lin, and Qingming Huang. Relay back-
propagation for effective learning of deep convolutional neu-
ral networks. In ECCV, 2016. 2, 3

[43] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou,
Zongben Xu, and Deyu Meng. Meta-weight-net: Learning
an explicit mapping for sample weighting. In NeurIPS, 2019.
1, 2, 3, 4, 5, 6, 7, 8

[44] Jun Shu, Qian Zhao, Zengben Xu, and Deyu Meng. Meta
transition adaptation for robust deep learning with noisy la-
bels. arXiv preprint arXiv:2006.05697, 2020. 1

[45] Chi Su, Jianing Li, Shiliang Zhang, Junliang Xing, Wen Gao,
and Qi Tian. Pose-driven deep convolutional model for per-
son re-identification. In ICCV, pages 3960–3969, 2017. 2

[46] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and
Alex Alemi. Inception-v4, inception-resnet and the impact
of residual connections on learning. In AAAI, 2016. 7

[47] Daiki Tanaka, Daiki Ikami, Toshihiko Yamasaki, and Kiy-
oharu Aizawa. Joint optimization framework for learning
with noisy labels. In CVPR, 2018. 1, 2

[48] Arash Vahdat. Toward robustness against label noise in train-
ing deep discriminative neural networks. In NeurIPS, 2017.
2

[49] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan
Wierstra, et al. Matching networks for one shot learning.
In NeurIPS, 2016. 7

[50] Nidhi Vyas, Shreyas Saxena, and Thomas Voice. Learn-
ing soft labels via meta learning. arXiv preprint
arXiv:2009.09496, 2020. 1, 3

[51] Zhen Wang, Guosheng Hu, and Qinghua Hu. Training noise-
robust deep neural networks via meta-learning. In CVPR,
2020. 1, 2, 3, 4, 5

[52] Hongxin Wei, Lei Feng, Xiangyu Chen, and Bo An. Com-
bating noisy labels by agreement: A joint training method
with co-regularization. In CVPR, 2020. 2, 3, 7

[53] Xiaobo Xia, Tongliang Liu, Nannan Wang, Bo Han, Chen
Gong, Gang Niu, and Masashi Sugiyama. Are anchor points
really indispensable in label-noise learning? In NeurIPS,
2019. 2

[54] Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang
Wang. Learning from massive noisy labeled data for image
classification. In CVPR, 2015. 1, 7

[55] Chenglin Yang, Lingxi Xie, Chi Su, and Alan L Yuille. Snap-
shot distillation: Teacher-student optimization in one gener-
ation. In CVPR, 2019. 2

[56] Kun Yi and Jianxin Wu. Probabilistic end-to-end noise cor-
rection for learning with noisy labels. In CVPR, 2019. 2

[57] Xi Yin, Xiang Yu, Kihyuk Sohn, Xiaoming Liu, and Man-
mohan Chandraker. Feature transfer learning for face recog-
nition with under-represented data. In CVPR, 2019. 2, 3

[58] Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor W
Tsang, and Masashi Sugiyama. How does disagreement help
generalization against label corruption? In ICML, 2019. 2

[59] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. In BMCV, 2016. 6

[60] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. Understanding deep learning re-
quires rethinking generalization. In ICLR, 2017. 1

[61] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In ICLR, 2018. 2, 7

[62] Zizhao Zhang, Han Zhang, Sercan O Arik, Honglak Lee, and
Tomas Pfister. Distilling effective supervision from severe
label noise. In CVPR, 2020. 2

[63] Boyan Zhou, Quan Cui, Xiu-Shen Wei, and Zhao-Min Chen.
Bbn: Bilateral-branch network with cumulative learning for
long-tailed visual recognition. In CVPR, 2020. 2, 3, 8

[64] Linchao Zhu and Yi Yang. Inflated episodic memory with
region self-attention for long-tailed visual recognition. In
CVPR, 2020. 1, 2

