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A. Derivation of the Meta-Train Step
Recall that g = 1

m

∑m
j=1∇θLvalj (ŵ(θ)) is the meta gra-

dient for the meta model. Following [8, 9], by using the
chain rule, the back-propagation of the Meta-Train can be
written as,
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Suppose that the network (e.g., a MLP model) has L layers,
which is denoted as Φ(x; {wl}Ll=1), where wl represents the
parameter for l-th layer. With w = {wl}Ll=1, we can have:
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For notational convenience, let Gi,j,l =(
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, hence g can be formulated
as:
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where α is the learning rate for the network. n and m de-
note the batch size for training mini-batch and the validation
mini-batch.

B. The FaMUS Learning Algorithm
In this section, we first summarize the proposed Faster

Meta Update Strategy (FaMUS) in Algorithm 1. Then, we

Algorithm 1 Faster Meta Update Strategy

Input: Training data: Dtrain = {(xtrai , ytrai )}Ni=1, validation
data: Dval = {(xvalj , yvalj )}Mj=1, base DNN: Φ(·, w), meta
model: Ψ(·, θ), gradient samplers: {Γ(·, ηl)}Ll=1, and the
maximum iteration: T

Output: updated base DNN: Φ(·, w); updated meta model:
Ψ(·, θ); updated gradient samplers: {Γ(·, ηl)}Ll=1

1: for t = 0, 1, . . . , T − 1 do
2: draw training mini-batch: Btrain from Dtrain
3: draw validation mini-batch: Bval from Dval

// 1. Virual-Train step:
4: update ŵ by Eq.(3)

// 2. Meta-Train step with FaMUS:
5: compute g′ by Eq.(11)
6: update θ′ = θ − β × g′

7: for l = 1, 2, . . . , L do
8: update η′l = ηl − δ ×∇ηlL

val

9: ηl = η′l for the (t+ 1)-th batch
10: end for

// 3. Actual-Train step:
11: update w′ by Eq.(5)
12: w = w′, and θ = θ′ for the (t+ 1)-th batch
13: end for

introduce how we use it on the pseudo-clean label set to
achieve the-state-of-art performance in Algorithm 2.

Algorithm 1 shows MW-Net [9] with the proposed Fa-
MUS step. We use MW-Net as an example and it is straight-
forward to extend Algorithm 1 to the other meta-learning
models such as L2R [8] and MLC [12] by replacing their
original Meta-Train step with the proposed FaMUS. δ is the
learning rate for the gradient samplers.

Algorithm 2 shows the proposed FaMUS applying on the
pseudo-validation set. Particularly, we train two base DNNs
and two GMMs, where the GMM for one base DNN is em-
ployed to get a pseudo-clean label set, which will be used
as the meta-learning validation set for the other base DNN.
Please refer to Section E for how we construct the noisy
meta-learning validation set. Note that when compared with
previous meta-learning methods [8, 9, 12], our method does
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Figure 1: The weight distribution of clean examples on CIFAR-10 and CIFAR-100, both with 60% noise. We illustrate the
distribution of four different training steps: 8K, 12K, 16K, and 20K. “Random” means we uniformly select 4 layers of
meta gradients to approximate the total meta gradient for the meta model.

Algorithm 2 FaMUS with the Pseudo-clean Label Set

Input: Training data Dtrain = {(xtrai , ytrai )}Ni=1

Output: Base DNNs: Φ(·;w1) and Φ(·;w2); Meta model:
Ψ(·; θ1) and Ψ(·; θ2); gradient samplers: Γl(·; η1l ) and
Γl(·; η2l ), where l ∈ [1, L]

1: for e = 0, 1, . . . , E − 1 do // separate the training data into
a pseudo-clean and a pseudo-noisy label set:

2: Dclean1 , Dnoisy1 = GMM(Dtrain, Φ(·;w1))
3: Dclean2 , Dnoisy2 = GMM(Dtrain, Φ(·;w2))

// using Alg. 1 to train the base DNN, the meta model,
and gradient samplers

4: w1, θ1, {η1l }Ll=1 ← Alg. 1(Dtrain, Dclean2 , w1, θ1,
{η1l }Ll=1)

5: w2, θ2, {η2l }Ll=1 ← Alg. 1(Dtrain, Dclean1 , w2, θ2,
{η2l }Ll=1)

6: end for

not use any clean labels or data.

C. Weight Distribution of Clean Examples
Figure 1 shows the weight distribution of all clean train-

ing examples on both CIFAR-10 and CIFAR-100 with 60%
noise. We show the weight distributions on four different
training steps: 8K, 12K, 16K, and 20K. We compare our
method with two strong baselines: the original MW-Net [9]
and Random MW-Net. “Random MW-Net” means we uni-
formly select four layers of meta gradients to approximate
the total meta gradient to update the meta model. As shown,
compared with the original MW-Net [9] and Random MW-
Net, the meta model learned by our FaMUS tends to give
larger weights to the clean examples throughout the training
process. The result substantiates that our method is able to
improve the capability of the meta-learning methods (e.g.,
MW-Net).
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Figure 2: Statistics of the sampled layers by FaMUS on the
CIFAR-100 with 60% noise.

D. Visualization of the Sampled Layers
Figure 2 shows the statistics of the selected layers gener-

ated by FaMUS. The model is trained on CIFAR-100 with
60% noise. From Figure 2, we find that FaMUS automat-
ically learns to pick a few specific layers, and in particular
top layers are more favorable.

E. Implementation Details
In this section, we first detail how we construct the meta-

learning validation set. Then we discuss the training details
for the comparison with the state-of-the-art and the meta-
learning methods. Finally, we describe the training details
about the experiments on the long-tailed classification.

Details of meta-learning validation set. Inspired by [5],
we employ a two-component GMM to separate the training
data into a pseudo-clean label set and a pseudo-noisy la-
bel set. Then, the pseudo-clean label set is employed as
the meta-learning validation set to train the meta model.
To be more specific, for the i-th example, the input to
GMM is its training loss Ltrai (w), while the output of
GMM is the corresponding clean probability scale ci and
ci ∈ [0, 1]. The clean probability ci is the posterior prob-
ability p(q|Ltrai (w)), where q is the Gaussian component
with the smaller mean. Note that the GMM can be updated



by the Expectation-Maximization algorithm by taking the
loss distribution of all training examples {Ltrai (w)}ni=1 as
input. We set the maximum iteration number to 10, the con-
vergence threshold to 1e-2, and the number of components
to 2.

Training details for comparing with the state-of-the-art.
For FaMUS, the learning rate δ is fixed to 1e-1 throughout
the training. λ1 and λ2 are searched from {0, 0.1}. K is set
to 4 for all experiments. The learning rate β for the meta
model is fixed to 1e-3. The training details for the base
DNNs are listed below:

CIFAR-10 and CIFAR-100. Following previous
work [5], we employ the PreAct ResNet-18 [3] as the base
DNN, which is optimized by SGD, with a weight decay of
5e-4 and a momentum of 0.9. The batch size is set to 64.
The learning rate α starts at 0.02, decreases to its 1

10 at the
200 epoch and the 250 epoch, and stops at the 300 epoch.

WebVision. We employ the Inception-ResNet V2 [10]
as the base DNN. The batch size is set to 16. The learning
rate α starts at 0.02, decreases to its 1

10 at the 100 epoch,
and stops at the 150 epoch. The base DNN is optimized by
SGD, with a weight decay 5e-4 and a momentum 0.9.

Clothing1M. We employ the ResNet-50 [2] as the base
DNN, which is optimized by SGD, with a momentum of
0.9 and a weight decay of 1e-3. The batch size is set to 32.
The learning rate α starts at 0.002, decreases to its 1

10 at the
100 epoch, and stops at the 150 epoch. For each epoch, we
randomly sample 1000 mini-batch from training data while
maintaining the label noise balanced.

Controlled Noisy Web Labels (CNWL). We download
the dataset from their website 1. We employ the PreAct
ResNet-18 [3] as the base DNN. The batch size is set to 64.
The learning rate α starts at 0.02, decreases to its 1

10 at the
200 epoch and the 250 epoch, and stops at the 300 epoch.
The base DNN is optimized by SGD with a momentum of
0.9 and a weight decay of 5e-4. For the baseline models, we
run the MentorMix [4]2, Mixup [16]3, DivideMix [5]4 using
their official implementations on the CIFAR datasets. Note
that in order to use their implementations, we downsam-
ple the images of the CNWL Mini-ImageNet dataset from
84x84 to 32x32. This results in new benchmark numbers
to compare our baseline methods, and supplements [4]’s re-
sults on 32x32 images.

Training details for comparing with meta-learning
methods. We implement our FaMUS with three meta-

1https://google.github.io/controlled-noisy-web-labels
2https://github.com/google-research/google-research/

tree/master/mentormix
3https://github.com/facebookresearch/mixup-cifar10
4https://github.com/LiJunnan1992/DivideMix

Method Accuracy (%)
F-correction [7] 69.84
JoCoR [13] 70.30
M-correction [1] 71.00
MLC [12] 71.06
Joint-Optim [11] 72.16
MLNT [6] 73.47
P-correction [14] 73.49
MW-Net [9] 73.72
MentorMix [4] 74.30
Ours 74.43

Table 1: Top-1 Accuracy on Clothing1M.

learning based approaches: L2R [8]5, MW-Net [9]6, and
MLC [12]7. All experiments are conducted on the identical
hardware platform of one NVIDIA V100 GPU. For L2R,
we use WideResNet-28-10 (WRN-28-10) [15] as the base
DNN. The batch size is set to 100. The learning rate α
starts from 0.05, decreases to its 1

10 at the 40K and 50K it-
eration, and stops at 60K iteration. The learning rate β for
the meta model is fixed to 1e-3. For MW-Net [9], we em-
ploy WRN-28-10 as the base DNN. The batch size is set to
100. The learning rate starts at 0.05, decreases to its 1

10 at
the 18K and the 19K iteration, stops at the 20K iteration.
We train the network using SGD with a momentum of 0.9
and a weight decay of 5e-4. The learning rate β for the meta
model is fixed to 1e-3. For MLC [12], we use the official
code. Particularly, we use the Wide ResNet of depth 40 and
widening factor 2 (WRN-40-2) [15]. The batch size is set
as 64. We train the network using SGD optimizer with a
learning rate of 1e-4, a momentum of 0.9, and a weight de-
cay of 5e-4. The learning rate β for the meta model is fixed
to 1e-5.

Training details for the long-tailed classification. For
experiments on long-tail CIFAR-10 and CIFAR-100, we use
ResNet-32 as base DNN, which is optimized by SGD with
a weight decay of 5e-4 and a momentum of 0.9. The learn-
ing rate α starts at 0.1, decreases to its 1

10 at the 160 epoch
and 180 epoch, stops at the 200 epoch. As for the meta
model, the learning rate β is fixed to 1e-5. As for FaMUS,
the learning rate δ is fixed to 1e-2. λ1 and λ2 are searched
from {0, 0.1}. K is set to 4.

F. Results on Clothing1M
Table 1 compares the state-of-the-art on Clothing1M

dataset. From Table 1, we can find that our method is

5https : / / github . com / uber - research / learning - to -
reweight-examples

6https://github.com/xjtushujun/Meta-weight-net
7https : / / github . com / ZhenWang - PhD / Training - Noise -

Robust-Deep-Neural-Networks-via-Meta-Learning



Method
CIFAR-10 CIFAR-100

40% 60% 40% 60%
DivideMix 95.06 94.46 75.15 71.41

±0.14 ±0.21 ±0.12 ±0.61
MW-Net + Pseudo-clean 93.64 92.91 74.61 70.55

±0.35 ±0.15 ±0.25 ±0.57
Ours 95.37 94.97 75.91 73.58

±0.15 ±0.11 ±0.19 ±0.28

Table 2: Results on CIFAR-10 and CIFAR-100. “Pseudo-
clean” refers to the pseudo-clean label set constructed by
GMMs. Percentage numbers denote the noise rate.

competitive with recently published methods. In partic-
ular, our method outperforms several meta-learning ap-
proaches [9, 6, 12]. Note that these meta-learning meth-
ods are learned with clean validation examples, while our
method is trained by the pseudo-clean label set generated
by GMMs. Compared with the recently proposed method
(e.g., MentorMix [4]), our method gets a comparable per-
formance.

G. More Experimental Results

Table 2 compares our method with two strong baselines:
DivideMix [5] (reported in the main paper) along with
another method called “MW-Net + Pseudo-clean” which
trains the MW-Net model with the same pseudo-clean label
set constructed by GMMs as ours. Since all the methods are
trained on the pseudo-clean label set, this experiment is to
examine the contribution of our methodology.

We report the average and the standard deviation of over
three training trials using different random seeds for each
method. Table 2 shows that our method outperforms all
baseline methods with a statistically significant difference
at the p-value level of 0.05, according to the one-tailed un-
paird t-test. These results substantiate the superior perfor-
mance stems from the proposed method as opposed to the
pseudo-clean label set.
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