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Abstract

In this paper, we investigate the audio-visual event local-
ization problem. This task is to localize a visible and audi-
ble event in a video. Previous methods first divide a video
into short segments, and then fuse visual and acoustic fea-
tures at the segment level. The duration of these segments
is usually short, making the visual and acoustic feature of
each segment possibly not well aligned. Direct concatena-
tion of the two features at the segment level can be vulner-
able to a minor temporal misalignment of the two signals.
We propose a Dual Attention Matching (DAM) module to
cover a longer video duration for better high-level event in-
formation modeling, while the local temporal information is
attained by the global cross-check mechanism. Our premise
is that one should watch the whole video to understand the
high-level event, while shorter segments should be checked
in detail for localization. Specifically, the global feature of
one modality queries the local feature in the other modal-
ity in a bi-directional way. With temporal co-occurrence
encoded between auditory and visual signals, DAM can be
readily applied in various audio-visual event localization
tasks, e.g., cross-modality localization, supervised event
localization. Experiments on the AVE dataset show our
method outperforms the state-of-the-art by a large margin.

1. Introduction

Multi-modal perception is essential when we human ex-
plore, capture and perceive the real world. Among these si-
multaneous sensory streams, vision and audio are two basic
streams that convey significant information. Jointly model-
ing these two modalities facilitates audio-visual scenes un-
derstanding and event detection.

Recently, some works explore the cross-modal learning
of visual and auditory information [3, 4, 5]. These studies
focus on the representation learning of two modalities but
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Figure 1. Examples of the audio-visual event localization problem.
It includes two tasks, i.e., the cross-modality localization (CML)
task and the supervised audio-visual event localization (SEL) task.
The CML task (the upper one in the figure) is to localize the event
boundary in one modality given an input event signal in the other
modality. The SEL task (the lower one) is to predict the event cat-
egory (including background) of each input audio-visual segment.
The orange color in the figure indicates the output of each task.

yet to explore the temporal localization. To study how to ex-
ploit audio and visual features for event localization jointly,
Tian et al. [30] introduce audio-visual event localization
in unconstrained videos. In this problem, an audio-visual
event is defined as an event that is both visible and audible
in a video segment. The goal is to localize the event bound-
ary in the temporal dimension (the cross-modality localiza-
tion task) and to predict what category the event belongs to
(the supervised audio-visual event localization task).

The cross-modality localization (CML) task is to lo-
cate the corresponding visual signals temporally from given
sound signals and vice versa. For example, as most aerial
videos have no audio signals, CML is particularly useful
when one needs to localize an event in aerial videos given a
query audio recorded by a smartphone. As defined in [30],
the task is generic, and thus no semantic label (event cate-



gory) is provided in this task. This task aims at measuring
the similarities between the two modalities, with an empha-
sis on generalization ability to unseen queries. In the super-
vised audio-visual event localization (SEL) task, one needs
to predict which temporal segment in an input video has an
audio-visual event and what category the event belongs to.
We show two examples in Fig. 1.

Previous methods [30, 19] first divide a video sequence
into short segments, extract visual and acoustic features for
each segment. After that, they either minimize distances be-
tween segment features of the two modalities (for the CML
task), or fuse the two features at the segment level (for the
SEL task). The advantage of these methods is that the seg-
ment level representation reveals well about the local infor-
mation, which is critical for localizing an event. The typical
duration of a segment is only one second, but even a simple
event may take up to a few seconds. Both visual and audio
content might vary a lot within a long period. Only using
local information from a small segment usually involves bi-
ases. In addition, since a segment is very short, directly fus-
ing visual and acoustic feature at segment level is vulnera-
ble to even a minor temporal misalignment or content noise
(e.g., occlusion, jitters) of the two signals. To summarize,
these methods exploit the local relation between audio and
vision, but overlook the global temporal co-occurrences be-
tween two modalities.

The global temporal co-occurrences are the correlation
in a long duration between the visual and audio modali-
ties. In an event, both visual and audio provide strong clues
about the occurrence, e.g., hearing a baby crying and seeing
a baby in the video simultaneously. The coincidence in a
long duration strongly indicates there is an event, since it is
unlikely that they co-occurred across modalities merely by
chance. It inspires us to take the global co-occurrences be-
tween two modalities as a strong and reliable signal while
localizing an event.

We propose the Dual Attention Matching (DAM) mod-
ule to leverage this relation. DAM looks into a longer video
duration to better model the whole event, while also at-
taining local temporal information by a global cross-check
mechanism. Our premise is that one must watch a longer
video clip to understand the high-level event but must check
shorter segments for localization. In a long duration, the
audio and visual channels convey the same information
about the same event, and this information should be tem-
porally aligned. Given the global event information from
one modality, DAM is designed to find which segments in
the other are most relevant to the event. We model event rel-
evance by querying from the global feature of one modality
to local features in the other and vice versa.

As a module that encodes the temporal co-occurrence
of audio-visual events, DAM can be readily applied in the
CML and SEL task. Experiments on the AVE dataset [30]

show our method outperforms the state-of-the-art methods
by a large margin.

To summarize, our contributions are as follows:

• We propose Dual Attention Matching, which looks
into a long duration to better model the high-level
event information while also attaining local temporal
information by a global cross-check mechanism.

• Our designed DAM module can be readily applied
in the cross-modality localization task. Experi-
ments show our method outperform the state-of-the-art
method by a large margin.

• To address the supervised audio-visual event local-
ization task, we design a novel joint-training frame-
work on top of DAM. Our framework leverages both
the sequence consistency of event predictions and
the temporal cross-modal co-occurrence of modalities,
demonstrating a decent performance in experiments.

2. Related Work
We first briefly introduce the cross modeling for vision

and sound, and then discuss the applications of vision and
sound techniques. Finally, we discuss related progress of
our focus, the audio-visual event localization problem.

2.1. Vision and Sound Representation Learning

Recently, the cross modeling for multi modalities has at-
tracted a lot of research attentions [3, 5, 33, 22, 23, 32, 11].
Among them, some work focus on the vision and audio
classification tasks. Audio and visual information is syn-
chronized in videos. Thus the audio channel can be used as
free self-supervision. In this way, Owens et al. [23] lever-
age ambient sounds as supervision to learn visual represen-
tations. Arandjelovic and Zisserman [3] propose to learn
both visual and audio representations in an unsupervised
manner through an audio-visual correspondence task. In
the opposite direction, Aytar et al. [5] propose SoundNet,
which designs a visual teacher network for learning audio
representations from unlabeled videos.

Based on the relation between audio and visual informa-
tion, Owens and Efros [21], and Korbar et al. [17] concur-
rently propose to learn such visual and audio representation
by a proxy task, the audio-visual temporal synchronization
task. In the self-supervised temporal synchronization task,
they train a neural network to predict whether video frames
and audio are temporally aligned. We share a similar spirit
with these approaches that learn from synchronized audio
and visual channels in videos. Different from theirs, our pri-
mar focus is the temporal localization between two modal-
ities. We introduce the long-term global representation to
help the model to understand the event, and then check each
local segment to give an accurate localization prediction.



2.2. Vision and Sound Applications

Apart from representation learning, there are also some
applications of the vision and sound field.
Sound source separation. Separating the individual sound
sources in an audio stream is a classic audio understanding
task [7]. It is natural to introduce the visual signal to solve
the problem, audio-visual source separation [21, 9, 34] .
These methods enable applications ranging from playing
musical instruments to speech separation and enhancement.
Audio, vision and language. Audio-visual associated be-
tween image scenes and audio captions are explored in [11].
Aytar et al. [6] propose to learn aligned representations
across modalities, e.g., audio, text, and vision. Recently,
Tian et al. [29] propose the audio-visual video captioning
task. Alamri et al. [1] introduce the audio-visual scene-
aware dialog task, where an agents task is to answer in nat-
ural language questions about a short video.
Sound localization. The sound localization problem en-
tails identifying which pixels or regions in a video are re-
sponsible for the recorded sound. Early works assume that
a sounding object is in motion. Hershey et al. [13] propose
to use a Gaussian process model to measure mutual infor-
mation between visual motion and audio. Kidron et al. [16]
propose to use canonical correlation analysis and exploits
the spatial sparsity of audio-visual events. Recently, Seno-
cak et al. [27] propose an unsupervised algorithm to address
the problem of localizing the sound source in visual scenes.
Arandjelovic and Zissermanl [4] locate sound source spa-
tially in an image based on an extended correspondence net-
work. Zhao et al. [34] propose PixelPlayer to separate input
sounds and also locate them in the visual input.

Related to these approaches, we share the goal of locat-
ing audio in visual channels. Whereas they aim to spatially
localize the audio source in videos (or images), we focus
on temporally locating the audio event in the visual channel
and vice versa.

2.3. Audio-visual Event Localization

Temporal event localization aims to detect and localize
event in videos. Early works [12, 24] detect event in sound
using only audio signals. However, the visual signals also
provide rich information and should be considered in event
detection. Tian et al. [30] propose the audio-visual event
localization problem that detects events by both audio and
visual modalities. In this problem, the audio-visual event
may contain multiple actions or motionless sounding ob-
jects. The audio-visual event localization problem includes
three tasks in [30], i.e., supervised and weakly-supervised
audio-visual event localization, and cross-modality local-
ization. Tian et al. [30] introduce an audio-guided visual at-
tention mechanism to adaptively learn which visual regions
to look for the corresponding sounding object or activity.
Lin et al. [19] propose to integrate audio and visual feature

to a global feature in a sequence-to-sequence manner. How-
ever, these methods fuse two modality features at the seg-
ment level. Differently, we propose to leverage the global
event feature as the reference when localizing an event.

3. Methodology
In this section, we introduce our Dual Attention Match-

ing (DAM) module that addresses the audio-visual event lo-
calization problem. We begin with the preliminaries of the
problem statement and then introduce the DAM module in
detail. In Sec 3.3 and Sec. 3.4, we illustrate how to ap-
ply our DAM module on two applications, i.e., the cross-
modality localization (CML) task and supervised audio-
visual event localization (SEL) task, respectively.

3.1. Preliminaries

In the audio-visual event localization problem, each
video contains an audio-visual event that is both visible
and audible. For an audio-visual video sequence S =
(SA, SV ), SA is the audio channel, and SV is the vi-
sual channel. The temporal length of the sequence S is
N seconds. Following [30], the whole video sequence is
split into N non-overlapping segments {sAt , sVt }Nt=1, where
each segment is one second. sAt and sVt denote the audio
content and the synchronized visual counterpart of the t-
th segment, respectively. For a synchronized audio-visual
pair (sAt , s

V
t ), the event relevance label yt ∈ {0, 1} indi-

cates the relevance of the two modalities about the target
event. yt = 1 means that the audio sAt and visual content
sVt contain the event. We define the event-relevant region
TE = {t|yt = 1, 1 ≤ t ≤ N} as the time region when
the event is happening. For each modality input, we extract
the pre-trained CNN feature in the segment level. At time
t, we denote fAt and fVt as the local feature (segment-level)
of the audio segment and visual segment, respectively. Fol-
lowing [30], the local feature extractor is fixed, and we build
our method on top of these local features.

3.2. Dual Attention Matching Mechanism

To obtain better event representation from one modality,
we conduct a sequence embedding on the event-relevant re-
gion TE . Given the extracted global representation of one
modality, our goal is to find the local segments that are rel-
evant to the event in the other modality, and vice versa. We
use the attention mechanism to model the relation between
the global feature of one modality and the local features of
the other. The inner product of them is regarded as the
cross-modal similarity, which is further optimized by the
provided event relevance label y in training. Specifically,
for candidates in the event-relevant region, we expect the
local features to be close to the event representation, since
they both contain information about the same event. Thus
we pull the local features (of one modality) in this region
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Figure 2. The proposed dual attention matching (DAM) module. DAM looks into a longer video duration to better model the high-level
event information, while also attaining local temporal information by a global cross-check mechanism. DAM is optimized by finding
which segments in the other are relevant to the event. We first extract the local features for each input segment and gather the features only
in the event-relevant region. Then the self-attention is conducted on these local features to obtain a global event feature in this modality. To
localize the event temporally, we check each local segment by calculating the dot product between the global feature (from this modality)
and local feature (from the other modality). The dot product result should be 1 for those event segments and 0 for the background segments.

and the global feature (of the other) close to each other. For
the rest background region, we push them away from each
other. The pipeline of DAM is shown in Fig. 2.

Next, we illustrate the two components of the DAM
module, i.e., event-based sequence embedding, and the dual
matching mechanism.
Event-based Global Feature. For an input N -length event
video {sAt , sVt }Nt=1, the event-relevant sequence is SE =
{(sAt , sVt )|t = t1, t2, ..., te}, where ti ∈ TE indicates the
index of region where an event exists, e is the length of
event-relevant region TE . To reduce the background noise,
we abandon the background segments in building the global
feature. Inspired by [20, 31], we apply the self-attention
embedding on the event-relevant sequence to improve se-
quence embedding by considering the relationship among
the event-relevant segments. Attention is the scaled dot-
product conducted on the query, keys, and values,

att(q, k, v) = Softmax(
qkT√
d
, v), (1)

where d is the dimension of input feature vectors. In self-
attention [31], the query q, keys k, and values v are gener-
ated by transformations of the input vector,

self-att(x) = att(Wqx,Wkx,Wvx), (2)

where Wq , Wk, and Wv are the transformation weights for

the input x. After the self-attention embedding, we tempo-
rally average the output features as the final representation
for this modality. Taking the audio modality as an example,
the event-relevant global audio representation is obtained
by,

φA(SA) = mean(self-att(FA
E )), (3)

where mean is the temporal averaged pooling operation.
FA
E ∈ Re×d denotes the concatenation of local audio fea-

tures in event region TE . In this way, we obtain the event-
relevant audio representation φA(SA) ∈ Rd, which con-
tains the information about the whole event in the audio
channel. Similarly, in the visual channel, we also embed
the event-relevant visual feature by,

φV (SV ) = mean(self-att(FV
E )), (4)

where FV
E denotes the concatenation of local video features

on region TE . Now we have the global representations of
audio and visual channels. Next, we perform the cross-
modal attention matching to check each local segments.
Cross-Modal Dual Matching. The cross-modal match-
ing is based on the assumption that information is differ-
ent between event segments and background segments. In
the matching, the model is trained to distinguish which seg-
ment of an auditory/visual sequence is relevant to the event.
We use the dot product of global feature (in one modality)



and all the segment-level features (in the other) as the sim-
ilarities (attention weights). The cross-modal matching is
applied on both modalities (cross-check), i.e., both from vi-
sion to audio and from audio to vision. Given the global
features φA(SA) and φV (SV ), and the local feature fAt and
fVt , the event-relevant prediction is calculated by,

pAt = σ(φV (SV ) · fAt ), (5)

pVt = σ(φA(SA) · fVt ), (6)

where pAt and pVt denote the event relevance predictions on
the audio and visual channel at the t-th segment, respec-
tively. σ is the Sigmoid activation function that converts the
dot product to the range (0, 1). With these two cross-modal
matching, we have the final event-relevant prediction by,

pt =
1

2
(pAt + pVt ). (7)

The ground truth for the event-relevant prediction task
is the event-relevant label yt, i.e., pt should be 1 for if seg-
ment t is in the event-relevant region TE , and 0 for the back-
ground region. We use the Binary Cross Entropy (BCE) loss
to optimize the DAM module.

On top of the DAM module, we design frameworks for
two audio-visual event localization applications, i.e., the
CML task, and the SEL task.

3.3. Cross-Modality Localization

In the cross-modality localization (CML) task, given a
few event-relevant segments of one modality, the target is
to find the position of its synchronized content in the other
modality. This task is suitable to evaluate the model’s abil-
ity of leveraging audio-visual connections, since correla-
tions are the only information that can be used to localize
the event in the target modality.

The CML task contains two directional localization, i.e.,
visual localization from audio (A2V) and audio localiza-
tion from visual content (V2A). In the A2V task, given a
l-second event-relevant audio sequence ŜA from {sAt }Nt=1,
where l < N , the target to find its synchronized l-second
visual segment within {sVt }Nt=1. As defined in [30], there
is no semantic label (event category) provided during local-
ization. Similarly, in the V2A task, given a l-second visual
segment ŜV , we would like to find its l-second audio seg-
ment within {sAt }Nt=1.

Our designed DAM module can be readily applied to the
CML task. In training, the whole video and event relevance
labels are provided. We then train the DAM module as dis-
cussed in Sec. 3.2. In the inference stage, we first obtain
the event-based global feature from the query sequence, and
then use the global feature as a query to check each lo-
cal segment of the candidate. Each segment is assigned a
prediction score that indicates its relevance with the input
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Figure 3. Framework for the Supervised Audio-Visual Event Local-
ization task. The yellow block and orange block indicate the event
category prediction and event relevance prediction, respectively.
For inference, the final is the combination of the two prediction.

query. Finally, we look into the prediction scores of the N -
length candidate segments, and output the l-length sequence
with maximum contiguous sum as the final localization pre-
diction.

3.4. Supervised Audio-Visual Event Localization

The supervised audio-visual event localization task is to
predict which temporal segment of an input video has an
audio-visual event and what category the event belongs to.
In this task, we have both the event-relevant region anno-
tations y and the event category label annotations yc. Note
that only one event category exists within a video in the
task. The target is to predict the categories (including back-
ground) for all the N -length segments of an input event
video.

Different from [30, 19], We decouple this task by two
subtasks, i.e., 1) predicting the event category based on
the overall sequences, and 2) differentiate background seg-
ments in the untrimmed event videos. As shown in Fig. 3,
the model mainly contains two branches. We extract the
global representation of the audio channel and visual chan-
nel by the self-attention mechanism. Note that the self-
attention takes as input all segments including background.
The reason is that we cannot access the annotation of event
region TE during evaluation. Then we fuse the two global
features and predict the event category ŷc based on the
fused features. In the meantime, the DAM module takes the
global features and check each local (segment-level) fea-
tures to predict event relevance ŷt, which is further used to
determine whether the t-th segment is the background. Fol-



lowing [30], we also use audio-guided visual attention in
generating local visual features. In the inference stage, the
final prediction is the combination of predictions ŷc and ŷt.
For a t-th segment, if ŷt < 0.5, the final prediction for this
segment is background. If ŷt ≥ 0.5, the segment is pre-
dicted to be event-relevant and thus the final prediction is
the event category prediction ŷc.

In the training stage, we have the corresponding event
category label and event relevance label, thus the overall
objective function is,

L = λLc + (1− λ) 1
N

N∑
t=1

Lr
t , (8)

where Lc is the Cross-Entropy loss for the event category
prediction ŷc, and Lr

t is the Binary Cross Entropy loss for
the event relevance prediction ŷrt at t-th segment. We will
evaluate the effectiveness of λ in Sec. 4.3.

4. Experiments

We first discuss the experimental setups and then com-
pare our method with the state-of-the-art methods on the
AVE dataset under two tasks. Ablation studies and qualita-
tive results are provided to show the effectiveness of DAM.

4.1. Experiment Setup

The Audio-Visual Event (AVE) dataset [30] derived from
AudioSet [10], contains 4,143 videos covering 28 event cat-
egories. The videos in the AVE dataset involve a wide range
of audio-visual event domains, e.g., human activities, an-
imal activities, music performances, and vehicle sounds.
The detailed events categories, including man speaking, dog
barking, playing guitar, and frying food etc., last at least
two-second in length for each video. Each video lasts 10
seconds with both audio and video tracks. Videos in AVE
are temporally labeled with audio-visual event boundaries,
which demonstrates whether a segment is event-relevant or
the background.
Evaluation metrics. In the CML task, the only information
provided in training is the audio-visual event boundaries.
The task has two evaluation subtasks, including visual lo-
calization from audio (A2V) and audio localization from
visual content (V2A). A good matching defined in this task
is that a matched audio/visual segment is exactly the same
as its ground truth; otherwise, it will be a bad matching.
We compute the percentage of good matchings overall all
testing samples as prediction accuracy to evaluate the per-
formance of CML. In the SEL task, we predict the cate-
gory for each one-second segment in an input video. Note
“background” is also a category in this classification task.
The overall classification accuracy is used as an evaluation
metric for this task.

Method A2V V2A Average
DCCA [2] 34.1 34.8 34.5
AVDLN [30] 35.6 44.8 40.2
Ours 47.1±±± 1.6 48.5±±± 1.4 47.8±±± 1.5

Table 1. Comparisons with the state-of-the-art methods on the
cross-modality localization task. A2V: visual localization from
audio sequence query; V2A: audio localization from visual se-
quence query. “Average” indicates the averaged score of two tasks.
We report the mean and standard deviation of three runs to reduce
randomness.

Implementation details. We adopt pre-trained CNN mod-
els to extract local segments features for audio and visual
content. For a fair comparison, we use the VGG-19 [28]
network pre-trained from the ImageNet [25] dataset as the
visual CNN model to extract features for each 1-second vi-
sual segment. Similarly, for audio representation, we ex-
tract the audio representation for each 1 second audio seg-
ment via a VGG-like network [14] pre-trained on AudioSet
[10]. In experiments, for a fair comparison, we use the same
low-level structure (e.g., low-level embedding, segment-
level attentions) as used in [30]. For the self-attention mod-
ule, we use the default structure as illustrated in [31].

4.2. Comparison with State-of-the-art Results

Cross-modality localization. Table 1 shows the per-
formances of our method and state-of-the-art methods
AVLN [30] and DCCA [2] on the CML task. The AVLN
method, similar with [4], extract features for two modali-
ties and measures the relativeness of them by a simple Eu-
clidean distance. Different from AVLN [30] and DCCA [2]
that only focus on the local segments, our DAM first
watches a long event sequence to obtain a stable representa-
tion and then check each segment for a better localization.
Our method, with the designed DAM module, outperforms
the state-of-the-art methods by a large margin on both A2V
and V2A tasks. Specifically, on the A2V task, our method
improves the accuracy from 35.6% to 47.1%. The improve-
ment is not easy since the CML task is challenging. The
provided annotations in this task are very limited (only with
the event boundaries but without the event label), the con-
tents are very different (one is audio, and the other is vi-
sual), and the evaluation metric is strict (which counts only
the exact matches).
Supervised audio-visual event localization. We also test
our proposed framework on the SEL task, which is a
segment-level event classification problem. In training, we
have detailed event categories (including background) an-
notations for each 1-second segment. We compare our
method with state-of-the-art methods. ED-TCN [18] is a
state-of-the-art temporal action labeling method. Tian et
al. [30] propose the baseline for this task, which utilizes
pre-trained CNN models to encode audio and visual inputs,



Method Accuracy (%)
ED-TCN [18] 46.9
Audio (pre-trained VGG-like [14]) 59.5
Visual (pre-trained VGG-19 [28]) 55.3
Audio-visual [30] 71.4
AVSDN* [19] 72.6
Audio-visual+Att [30] 72.7
Ours 74.5±±± 0.6

Table 2. Comparisons with the state-of-the-art methods in the su-
pervised audio-visual event localization task on the AVE dataset. *
indicates the reproduced performance using the same pre-trained
VGG-19 feature for a fair comparison. We report the mean and
standard deviation of three runs to reduce randomness.

Method V2A A2V Average
DAM w/ RNN 41.8 47.9 44.9
DAM w/ Averaged Pooling 46.0 46.1 46.1
DAM w/ Max Pooling 45.8 46.2 46.0
DAM w/ LSTM [15] 43.5 48.1 45.8
DAM w/ GRU [8] 45.5 47.4 46.5
DAM w/ BLSTM [26] 44.2 48.1 46.2
DAM w/ Self-Att [31] 47.1 48.5 47.8

Table 3. Comparisons of different sequence embedding functions
used in the DAM module on the cross-modality localization task.

adapts LSTM to capture temporal dependencies, and ap-
plies a fully connected layer to make the final predictions.
On top of the baseline model, Tian et al. [30] further intro-
duce the audio-guided visual attention mechanism to adap-
tively learn which visual regions to look for the correspond-
ing sounding object or activity. Lin et al. [19] propose the
AVSDN method by introducing an additional LSTM to re-
place the final prediction classifier. Table 2 summarizes the
performances of our method and the state-of-the-art meth-
ods on the AVE dataset. We observe that our method yields
higher accuracy than the best state-of-the-art result (74.5%
versus 72.7%).

4.3. Ablation Studies

Different sequence embedding functions. We systemati-
cally investigate different sequence embedding functions to
replace the self-attention module (Eqn. (2)) used in DAM.
The common sequence embedding functions that model the
sequence relationship are Averaged Pooling, Max Pooling,
RNN, LSTM [15], Bidirectional-LSTM [26], GRU [8], and
Self-Attention [31]. We evaluate these sequence embed-
ding functions in our DAM module to reveal the effect of
global information. The performance comparisons are re-
ported in Table 3. Among all the embedding functions,
self-attention achieves the best performance. It is worth
mentioning that with two non-parametric embedding func-
tions (Max Pooing and Averaged Pooling), the overall per-

Method V2A A2V Average
DAM w/ Self-Matching 28.6 29.8 29.2
DAM w/ Cross-Matching 47.1 48.5 47.8

Table 4. Comparisons of the cross-modal matching and self-
matching on the cross-modality localization task. “Self-Matching”
indicates we use the global feature of the modality itself as a query
to match the local features. “Cross-Matching” is the cross-modal
matching in our DAM (discussed in Sec. 3.2).

Method Accuracy (%)
Ours w/o Matching 70.7
Ours w/ Self-Matching 74.2
Ours w/ Cross-Matching 74.5

Table 5. Ablation studies on the matching mechanism on the su-
pervised audio-visual event localization task. “Ours w/o Match-
ing” indicates our framework without the DAM module. “Self-
Matching” indicates we use the global feature of the modality it-
self as a query to match the local features.

formance of the DAM module still outperforms the state-
of-the-art method [30] that only focuses on local segments.
It is consistent with our motivation that one must watch a
long video clip to understand the whole event before check-
ing each local segment for localization.
Cross-modal matching versus self-matching. We also
perform self-matching instead of cross-modal matching in
the DAM to validate the effectiveness of cross-checking.
Specifically, instead of using the global feature from the
other modality, we change the global feature φV (SV ) and
φA(SA) in Eqn. 5 and Eqn. 6 by the global feature of the
modality itself. Table 4 reports the performance compari-
son in the CML task. “Ours w/ Self-Matching” indicates
the model is learned by leveraging the weak relation within
the modality itself. In the inference stage, we calculate the
Cosine distance between the query and candidates, and out-
put the one with the minimum distance as the localization
prediction. The performance of self-matching is far away
from our DAM, indicating that the temporal co-occurrence
is a strong correlation between modalities in CML. Table 5
summarise the performance comparisons on the SEL task.
The “Ours w/o Matching” denotes the framework that uti-
lizes the consistency of event sequence, but do not use
global feature to check local segments via DAM. Since the
model cannot distinguish the background and event seg-
ments, it thus achieves a poor performance (70.7%) in the
SEL task. The self-matching model outperforms the one
without matching by 3.5 points, which also validates our
motivation that it is helpful to watch the whole event be-
fore localizing each small segments. Our DAM with cross-
matching further improves the performance by leveraging
cross modal information. Note the performance gain in the
SEL task is relatively small compared to that in the CML



Figure 4. Qualitative results. Green and red stand for the correct and wrong predictions, respectively. The first two examples show the A2V
task, in which the input audio query is located in its ground truth position on the temporal dimension (horizontal). The bottom one shows
an example of the SEL task. The model fails in predicting the fourth segment. The ground truth for the fourth segment is “barking” while
our model predicts it to be “BG” (background).

task. The reason is that the complementarity of the two
modalities has already been utilized through the fused fea-
tures of the two modalities during prediction.
Analysis on the balancing parameter λ. In Eqn. (8), λ is
a hyper-parameter balancing the contributions of the event
relevance loss Lr and the event category loss Lc. Fig. 5
shows the performance curves over different values of λ.
Note λ = 1 denotes only using the event category loss dur-
ing the training, i.e., without the DAM module. The best
performance is achieved at λ = 0.5 with 74.5%.

4.4. Qualitative Results

We show some qualitative results of our DAM model in
Fig. 4. Green and red in this figure stand for the correct
and wrong predictions, respectively. The first two examples
show the A2V task. We draw the input audio query in its
ground truth position on the temporal dimension (horizon-
tal). For the first example, although the visual content varies
a lot, our DAM still succeed in finding the correct temporal
location given a sound about frying food. The second ex-
ample is more hard. Given a sound of baby crying, it is not
easy to localize its visual segments because facial motion is
too small. Therefore, the predicted results (red box) is mis-
matched with the query. The bottom one shows an example
of the SEL task. The model fails in predicting the category
for the fourth segment. The ground truth is “barking” while
our model predicts it to be “background”. The main reason
is that “barking” starts from the middle of this segment.
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Figure 5. Performances on different values of the balancing pa-
rameter λ (defined in Eqn. (8)) on the SEL task.

5. Conclusion
In this work, we investigate the audio-visual event lo-

calization problem and propose the dual attention matching
(DAM) module. Different from previous methods that focus
on local segments, our DAM looks into a longer video dura-
tion to better model the high-level event information while
also attaining local temporal information by a global cross-
check mechanism. Our intuition is that one must watch
a longer video clip to understand the high-level event but
must check shorter segments for localization. Specifically,
given the global event information from one modality, DAM
is designed to find which segments in the other are most
relevant to the event. We model event relevance through
querying from the global feature to the local feature. Ex-
periments show our method outperforms the state-of-the-art
methods by a large margin.
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Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. In
EMNLP, 2014.

[9] Ruohan Gao, Rogerio Feris, and Kristen Grauman. Learning
to separate object sounds by watching unlabeled video. In
ECCV, 2018.

[10] Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren
Jansen, Wade Lawrence, R Channing Moore, Manoj Plakal,
and Marvin Ritter. Audio set: An ontology and human-
labeled dataset for audio events. In ICASSP, 2017.

[11] David Harwath, Antonio Torralba, and James Glass. Unsu-
pervised learning of spoken language with visual context. In
NIPS, 2016.

[12] Toni Heittola, Annamaria Mesaros, Antti J. Eronen, and Tuo-
mas Virtanen. Context-dependent sound event detection.
EURASIP J. Audio, Speech and Music Processing, 2013.

[13] John R Hershey and Javier R Movellan. Audio vision: Using
audio-visual synchrony to locate sounds. In NIPS, 2000.

[14] Shawn Hershey, Sourish Chaudhuri, Daniel P. W. Ellis,
Jort F. Gemmeke, Aren Jansen, Channing Moore, Manoj
Plakal, Devin Platt, Rif A. Saurous, Bryan Seybold, Malcolm
Slaney, Ron Weiss, and Kevin Wilson. Cnn architectures for
large-scale audio classification. In ICASSP, 2017.

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[16] Einat Kidron, Yoav Y Schechner, and Michael Elad. Pixels
that sound. In CVPR, 2005.

[17] Bruno Korbar, Du Tran, and Lorenzo Torresani. Coopera-
tive learning of audio and video models from self-supervised
synchronization. In NIPS, 2018.

[18] Colin Lea, Michael D Flynn, Rene Vidal, Austin Reiter, and
Gregory D Hager. Temporal convolutional networks for ac-
tion segmentation and detection. In CVPR, 2017.

[19] Yan-Bo Lin, Yu-Jhe Li, and Yu-Chiang Frank Wang. Dual-
modality seq2seq network for audio-visual event localiza-
tion. In ICASSP, 2019.

[20] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos,
Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua Bengio. A
structured self-attentive sentence embedding. In ICLR, 2017.

[21] Andrew Owens and Alexei A Efros. Audio-visual scene
analysis with self-supervised multisensory features. In
ECCV, 2018.

[22] Andrew Owens, Phillip Isola, Josh McDermott, Antonio Tor-
ralba, Edward H Adelson, and William T Freeman. Visually
indicated sounds. In CVPR, 2016.

[23] Andrew Owens, Jiajun Wu, Josh H McDermott, William T
Freeman, and Antonio Torralba. Ambient sound provides
supervision for visual learning. In ECCV, 2016.

[24] Giambattista Parascandolo, Heikki Huttunen, and Tuomas
Virtanen. Recurrent neural networks for polyphonic sound
event detection in real life recordings. In ICASSP, 2016.

[25] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. IJCV, 2015.

[26] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent
neural networks. IEEE Transactions on Signal Processing,
1997.

[27] Arda Senocak, Tae-Hyun Oh, Junsik Kim, Ming-Hsuan
Yang, and In So Kweon. Learning to localize sound source
in visual scenes. In CVPR, 2018.

[28] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In ICLR,
2014.

[29] Yapeng Tian, Chenxiao Guan, Justin Goodman, Marc
Moore, and Chenliang Xu. An attempt towards inter-
pretable audio-visual video captioning. arXiv preprint
arXiv:1812.02872, 2018.

[30] Yapeng Tian, Jing Shi, Bochen Li, Zhiyao Duan, and Chen-
liang Xu. Audio-visual event localization in unconstrained
videos. In ECCV, 2018.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NIPS, 2017.

[32] Yu Wu, Lu Jiang, and Yi Yang. Revisiting embod-
iedqa: A simple baseline and beyond. arXiv preprint
arXiv:1904.04166, 2019.

[33] Yu Wu, Linchao Zhu, Lu Jiang, and Yi Yang. Decoupled
novel object captioner. In ACM MM, 2018.

[34] Hang Zhao, Chuang Gan, Andrew Rouditchenko, Carl Von-
drick, Josh McDermott, and Antonio Torralba. The sound of
pixels. In ECCV, 2018.


